一、Tensorlow結(jié)構(gòu)
import tensorflow as tf
import numpy as np
#創(chuàng)建數(shù)據(jù)
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1+0.3
#創(chuàng)建一個(gè) tensorlow 結(jié)構(gòu)
weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))#一維,范圍[-1,1]
biases = tf.Variable(tf.zeros([1]))
y = weights*x_data + biases
loss = tf.reduce_mean(tf.square(y - y_data))#均方差函數(shù)
#建立優(yōu)化器,減少誤差,提高參數(shù)準(zhǔn)確度,每次迭代都會(huì)優(yōu)化
optimizer = tf.train.GradientDescentOptimizer(0.5)#學(xué)習(xí)率為0.5(1)
train = optimizer.minimize(loss)#最小化損失函數(shù)
#初始化不變量
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
#train
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(weights), sess.run(biases))
二、session的使用
import tensorflow as tf
matrix1 = tf.constant([[3, 3]])
matrix2 = tf.constant([[2], [2]])
product = tf.matmul(matrix1, matrix2)
#method1
sess = tf.Session()
result2 = sess.run(product)
print(result2)
#method2
# with tf.Session() as sess:
# result2 = sess.run(product)
# print(result2)
三、Variable的使用
import tensorflow as tf
state = tf.Variable(0, name = 'counter')#變量初始化
# print(state.name)
one = tf.constant(1)
new_value = tf.add(state, one)
#將state用new_value代替
updata = tf.assign(state, new_value)
#變量激活
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for _ in range(3):
sess.run(updata)
print(sess.run(state))
四、placeholder的使用
#給定type,tf大部分只能處理float32數(shù)據(jù)
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1, input2)
with tf.Session() as sess:
print(sess.run(output, feed_dict={input1:[7.], input2:[2.]}))
五、激活函數(shù) 六、添加層
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))#正態(tài)分布
biases = tf.Variable(tf.zeros([1, out_size])+0.1) #1行,out_size列,初始值不推薦為0,所以加上0.1
Wx_plus_b = tf.matmul(inputs, Weights) + biases #Weights*x+b的初始化值,也是未激活的值
#激活
if activation_function is None:
#如果沒有設(shè)置激活函數(shù),,則直接把當(dāng)前信號(hào)原封不動(dòng)的傳遞出去
outputs = Wx_plus_b
else:
#如果設(shè)置了激活函數(shù),則由此激活函數(shù)對(duì)信號(hào)進(jìn)行傳遞或抑制
outputs = activation_function(Wx_plus_b)
return outputs
七、創(chuàng)建一個(gè)神經(jīng)網(wǎng)絡(luò)
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))#正態(tài)分布
biases = tf.Variable(tf.zeros([1, out_size])+0.1) #1行,out_size列,初始值不推薦為0,所以加上0.1
Wx_plus_b = tf.matmul(inputs, Weights) + biases #Weights*x+b的初始化值,也是未激活的值
#激活
if activation_function is None:
#如果沒有設(shè)置激活函數(shù),,則直接把當(dāng)前信號(hào)原封不動(dòng)的傳遞出去
outputs = Wx_plus_b
else:
#如果設(shè)置了激活函數(shù),則由此激活函數(shù)對(duì)信號(hào)進(jìn)行傳遞或抑制
outputs = activation_function(Wx_plus_b)
return outputs
"""定義數(shù)據(jù)形式"""
#創(chuàng)建一列(相當(dāng)于只有一個(gè)屬性值),(-1,1)之間,有300個(gè)單位,后面是維度,x_data是有300行
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]#np.linspace在指定間隔內(nèi)返回均勻間隔數(shù)字
#加入噪聲,均值為0,方差為0.05,形狀和x_data一樣
noise = np.random.normal(0, 0.05, x_data.shape)
#定義y的函數(shù)為二次曲線函數(shù),同時(shí)增加一些噪聲數(shù)據(jù)
y_data = np.square(x_data) - 0.5 + noise
#定義輸入值,輸入結(jié)構(gòu)的輸入行數(shù)不固定,但列就是1列的值
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
"""建立網(wǎng)絡(luò)"""
#定義隱藏層,輸入為xs,輸入size為1列,因?yàn)閤_data只有一個(gè)屬性值,輸出size假定有10個(gè)神經(jīng)元的隱藏層,激活函數(shù)relu
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
#定義輸出層,輸出為l1輸入size為10列,也就是l1的列數(shù),輸出size為1,這里的輸出類似y_data,因此為1列
prediction = add_layer(l1, 10, 1,activation_function=None)
"""預(yù)測(cè)"""
#定義損失函數(shù)為差值平方和的平均值
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
"""訓(xùn)練"""
#進(jìn)行逐步優(yōu)化的梯度下降優(yōu)化器,學(xué)習(xí)率為0.1,以最小化損失函數(shù)進(jìn)行優(yōu)化
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
#初始化模型所有參數(shù)
init = tf.global_variables_initializer()
#可視化
with tf.Session() as sess:
sess.run(init)
for i in range(1000):#學(xué)習(xí)1000次
sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
if i%50==0:
print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
八、可視化
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))#正態(tài)分布
biases = tf.Variable(tf.zeros([1, out_size])+0.1) #1行,out_size列,初始值不推薦為0,所以加上0.1
Wx_plus_b = tf.matmul(inputs, Weights) + biases #Weights*x+b的初始化值,也是未激活的值
#激活
if activation_function is None:
#如果沒有設(shè)置激活函數(shù),,則直接把當(dāng)前信號(hào)原封不動(dòng)的傳遞出去
outputs = Wx_plus_b
else:
#如果設(shè)置了激活函數(shù),則由此激活函數(shù)對(duì)信號(hào)進(jìn)行傳遞或抑制
outputs = activation_function(Wx_plus_b)
return outputs
"""定義數(shù)據(jù)形式"""
#創(chuàng)建一列(相當(dāng)于只有一個(gè)屬性值),(-1,1)之間,有300個(gè)單位,后面是維度,x_data是有300行
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]#np.linspace在指定間隔內(nèi)返回均勻間隔數(shù)字
#加入噪聲,均值為0,方差為0.05,形狀和x_data一樣
noise = np.random.normal(0, 0.05, x_data.shape)
#定義y的函數(shù)為二次曲線函數(shù),同時(shí)增加一些噪聲數(shù)據(jù)
y_data = np.square(x_data) - 0.5 + noise
#定義輸入值,輸入結(jié)構(gòu)的輸入行數(shù)不固定,但列就是1列的值
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
"""建立網(wǎng)絡(luò)"""
#定義隱藏層,輸入為xs,輸入size為1列,因?yàn)閤_data只有一個(gè)屬性值,輸出size假定有10個(gè)神經(jīng)元的隱藏層,激活函數(shù)relu
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
#定義輸出層,輸出為l1輸入size為10列,也就是l1的列數(shù),輸出size為1,這里的輸出類似y_data,因此為1列
prediction = add_layer(l1, 10, 1,activation_function=None)
"""預(yù)測(cè)"""
#定義損失函數(shù)為差值平方和的平均值
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
"""訓(xùn)練"""
#進(jìn)行逐步優(yōu)化的梯度下降優(yōu)化器,學(xué)習(xí)率為0.1,以最小化損失函數(shù)進(jìn)行優(yōu)化
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
#初始化模型所有參數(shù)
init = tf.global_variables_initializer()
#可視化
with tf.Session() as sess:
sess.run(init)
fig = plt.figure()#先生成一個(gè)圖片框
#連續(xù)性畫圖
ax = fig.add_subplot(1, 1, 1)#編號(hào)為1,1,1
ax.scatter(x_data, y_data)#畫散點(diǎn)圖
#不暫停
plt.ion()#打開互交模式
# plt.show()
#plt.show繪制一次就暫停了
for i in range(1000):#學(xué)習(xí)1000次
sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
if i%50==0:
try:
#畫出一條后,抹除掉,去除第一個(gè)線段,但是只有一個(gè)相當(dāng)于抹除當(dāng)前線段
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs:x_data})
lines = ax.plot(x_data,prediction_value,'r-',lw=5)#lw線寬
#暫停
plt.pause(0.5)
可視化結(jié)果:
動(dòng)圖效果如下所示:
到此這篇關(guān)于基于Tensorflow搭建一個(gè)神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)Tensorflow搭建神經(jīng)網(wǎng)絡(luò)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:- python 使用Tensorflow訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)鳶尾花分類
- tensorflow2.0實(shí)現(xiàn)復(fù)雜神經(jīng)網(wǎng)絡(luò)(多輸入多輸出nn,Resnet)
- tensorflow之自定義神經(jīng)網(wǎng)絡(luò)層實(shí)例
- 使用TensorFlow搭建一個(gè)全連接神經(jīng)網(wǎng)絡(luò)教程
- python之tensorflow手把手實(shí)例講解貓狗識(shí)別實(shí)現(xiàn)