隨機(jī)爬山是一種優(yōu)化算法。它利用隨機(jī)性作為搜索過程的一部分。這使得該算法適用于非線性目標(biāo)函數(shù),而其他局部搜索算法不能很好地運(yùn)行。它也是一種局部搜索算法,這意味著它修改了單個(gè)解決方案并搜索搜索空間的相對局部區(qū)域,直到找到局部最優(yōu)值為止。這意味著它適用于單峰優(yōu)化問題或在應(yīng)用全局優(yōu)化算法后使用。
在本教程中,您將發(fā)現(xiàn)用于函數(shù)優(yōu)化的爬山優(yōu)化算法完成本教程后,您將知道:
- 爬山是用于功能優(yōu)化的隨機(jī)局部搜索算法。
- 如何在Python中從頭開始實(shí)現(xiàn)爬山算法。
- 如何應(yīng)用爬山算法并檢查算法結(jié)果。
教程概述
本教程分為三個(gè)部分:他們是:
- 爬山算法
- 爬山算法的實(shí)現(xiàn)
- 應(yīng)用爬山算法的示例
爬山算法
隨機(jī)爬山算法是一種隨機(jī)局部搜索優(yōu)化算法。它以起始點(diǎn)作為輸入和步長,步長是搜索空間內(nèi)的距離。該算法將初始點(diǎn)作為當(dāng)前最佳候選解決方案,并在提供的點(diǎn)的步長距離內(nèi)生成一個(gè)新點(diǎn)。計(jì)算生成的點(diǎn),如果它等于或好于當(dāng)前點(diǎn),則將其視為當(dāng)前點(diǎn)。新點(diǎn)的生成使用隨機(jī)性,通常稱為隨機(jī)爬山。這意味著該算法可以跳過響應(yīng)表面的顛簸,嘈雜,不連續(xù)或欺騙性區(qū)域,作為搜索的一部分。重要的是接受具有相等評估的不同點(diǎn),因?yàn)樗试S算法繼續(xù)探索搜索空間,例如在響應(yīng)表面的平坦區(qū)域上。限制這些所謂的“橫向”移動以避免無限循環(huán)也可能是有幫助的。該過程一直持續(xù)到滿足停止條件,例如最大數(shù)量的功能評估或給定數(shù)量的功能評估內(nèi)沒有改善為止。該算法之所以得名,是因?yàn)樗鼤S機(jī)地)爬到響應(yīng)面的山坡上,達(dá)到局部最優(yōu)值。這并不意味著它只能用于最大化目標(biāo)函數(shù)。這只是一個(gè)名字。實(shí)際上,通常,我們最小化功能而不是最大化它們。作為局部搜索算法,它可能會陷入局部最優(yōu)狀態(tài)。然而,多次重啟可以允許算法定位全局最優(yōu)。步長必須足夠大,以允許在搜索空間中找到更好的附近點(diǎn),但步幅不能太大,以使搜索跳出包含局部最優(yōu)值的區(qū)域。
爬山算法的實(shí)現(xiàn)
在撰寫本文時(shí),SciPy庫未提供隨機(jī)爬山的實(shí)現(xiàn)。但是,我們可以自己實(shí)現(xiàn)它。首先,我們必須定義目標(biāo)函數(shù)和每個(gè)輸入變量到目標(biāo)函數(shù)的界限。目標(biāo)函數(shù)只是一個(gè)Python函數(shù),我們將其命名為Objective()。邊界將是一個(gè)2D數(shù)組,每個(gè)輸入變量都具有一個(gè)維度,該變量定義了變量的最小值和最大值。例如,一維目標(biāo)函數(shù)和界限將定義如下:
# objective function
def objective(x):
return 0
# define range for input
bounds = asarray([[-5.0, 5.0]])
接下來,我們可以生成初始解作為問題范圍內(nèi)的隨機(jī)點(diǎn),然后使用目標(biāo)函數(shù)對其進(jìn)行評估。
# generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
# evaluate the initial point
solution_eval = objective(solution)
現(xiàn)在我們可以遍歷定義為“ n_iterations”的算法的預(yù)定義迭代次數(shù),例如100或1,000。
# run the hill climb
for i in range(n_iterations):
算法迭代的第一步是采取步驟。這需要預(yù)定義的“ step_size”參數(shù),該參數(shù)相對于搜索空間的邊界。我們將采用高斯分布的隨機(jī)步驟,其中均值是我們的當(dāng)前點(diǎn),標(biāo)準(zhǔn)偏差由“ step_size”定義。這意味著大約99%的步驟將在當(dāng)前點(diǎn)的(3 * step_size)之內(nèi)。
# take a step
candidate = solution + randn(len(bounds)) * step_size
我們不必采取這種方式。您可能希望使用0到步長之間的均勻分布。例如:
# take a step
candidate = solution + rand(len(bounds)) * step_size
接下來,我們需要評估具有目標(biāo)函數(shù)的新候選解決方案。
# evaluate candidate point
candidte_eval = objective(candidate)
然后,我們需要檢查此新點(diǎn)的評估結(jié)果是否等于或優(yōu)于當(dāng)前最佳點(diǎn),如果是,則用此新點(diǎn)替換當(dāng)前最佳點(diǎn)。
# check if we should keep the new point
if candidte_eval = solution_eval:
# store the new point
solution, solution_eval = candidate, candidte_eval
# report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))
就是這樣。我們可以將此爬山算法實(shí)現(xiàn)為可重用函數(shù),該函數(shù)將目標(biāo)函數(shù)的名稱,每個(gè)輸入變量的范圍,總迭代次數(shù)和步驟作為參數(shù),并返回找到的最佳解決方案及其評估。
# hill climbing local search algorithm
def hillclimbing(objective, bounds, n_iterations, step_size):
# generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
# evaluate the initial point
solution_eval = objective(solution)
# run the hill climb
for i in range(n_iterations):
# take a step
candidate = solution + randn(len(bounds)) * step_size
# evaluate candidate point
candidte_eval = objective(candidate)
# check if we should keep the new point
if candidte_eval = solution_eval:
# store the new point
solution, solution_eval = candidate, candidte_eval
# report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))
return [solution, solution_eval]
現(xiàn)在,我們知道了如何在Python中實(shí)現(xiàn)爬山算法,讓我們看看如何使用它來優(yōu)化目標(biāo)函數(shù)。
應(yīng)用爬山算法的示例
在本節(jié)中,我們將把爬山優(yōu)化算法應(yīng)用于目標(biāo)函數(shù)。首先,讓我們定義目標(biāo)函數(shù)。我們將使用一個(gè)簡單的一維x ^ 2目標(biāo)函數(shù),其邊界為[-5,5]。下面的示例定義了函數(shù),然后為輸入值的網(wǎng)格創(chuàng)建了函數(shù)響應(yīng)面的折線圖,并用紅線標(biāo)記了f(0.0)= 0.0處的最佳值。
# convex unimodal optimization function
from numpy import arange
from matplotlib import pyplot
# objective function
def objective(x):
return x[0]**2.0
# define range for input
r_min, r_max = -5.0, 5.0
# sample input range uniformly at 0.1 increments
inputs = arange(r_min, r_max, 0.1)
# compute targets
results = [objective([x]) for x in inputs]
# create a line plot of input vs result
pyplot.plot(inputs, results)
# define optimal input value
x_optima = 0.0
# draw a vertical line at the optimal input
pyplot.axvline(x=x_optima, ls='--', color='red')
# show the plot
pyplot.show()
運(yùn)行示例將創(chuàng)建目標(biāo)函數(shù)的折線圖,并清晰地標(biāo)記函數(shù)的最優(yōu)值。
接下來,我們可以將爬山算法應(yīng)用于目標(biāo)函數(shù)。首先,我們將播種偽隨機(jī)數(shù)生成器。通常這不是必需的,但是在這種情況下,我想確保每次運(yùn)行算法時(shí)都得到相同的結(jié)果(相同的隨機(jī)數(shù)序列),以便以后可以繪制結(jié)果。
# seed the pseudorandom number generator
seed(5)
接下來,我們可以定義搜索的配置。在這種情況下,我們將搜索算法的1,000次迭代,并使用0.1的步長。假設(shè)我們使用的是高斯函數(shù)來生成步長,這意味著大約99%的所有步長將位于給定點(diǎn)(0.1 * 3)的距離內(nèi),例如 三個(gè)標(biāo)準(zhǔn)差。
n_iterations = 1000
# define the maximum step size
step_size = 0.1
接下來,我們可以執(zhí)行搜索并報(bào)告結(jié)果。
# perform the hill climbing search
best, score = hillclimbing(objective, bounds, n_iterations, step_size)
print('Done!')
print('f(%s) = %f' % (best, score))
結(jié)合在一起,下面列出了完整的示例。
# hill climbing search of a one-dimensional objective function
from numpy import asarray
from numpy.random import randn
from numpy.random import rand
from numpy.random import seed
# objective function
def objective(x):
return x[0]**2.0
# hill climbing local search algorithm
def hillclimbing(objective, bounds, n_iterations, step_size):
# generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
# evaluate the initial point
solution_eval = objective(solution)
# run the hill climb
for i in range(n_iterations):
# take a step
candidate = solution + randn(len(bounds)) * step_size
# evaluate candidate point
candidte_eval = objective(candidate)
# check if we should keep the new point
if candidte_eval = solution_eval:
# store the new point
solution, solution_eval = candidate, candidte_eval
# report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))
return [solution, solution_eval]
# seed the pseudorandom number generator
seed(5)
# define range for input
bounds = asarray([[-5.0, 5.0]])
# define the total iterations
n_iterations = 1000
# define the maximum step size
step_size = 0.1
# perform the hill climbing search
best, score = hillclimbing(objective, bounds, n_iterations, step_size)
print('Done!')
print('f(%s) = %f' % (best, score))
運(yùn)行該示例將報(bào)告搜索進(jìn)度,包括每次檢測到改進(jìn)時(shí)的迭代次數(shù),該函數(shù)的輸入以及來自目標(biāo)函數(shù)的響應(yīng)。搜索結(jié)束時(shí),找到最佳解決方案,并報(bào)告其評估結(jié)果。在這種情況下,我們可以看到在算法的1,000次迭代中有36處改進(jìn),并且該解決方案非常接近于0.0的最佳輸入,其計(jì)算結(jié)果為f(0.0)= 0.0。
>1 f([-2.74290923]) = 7.52355
>3 f([-2.65873147]) = 7.06885
>4 f([-2.52197291]) = 6.36035
>5 f([-2.46450214]) = 6.07377
>7 f([-2.44740961]) = 5.98981
>9 f([-2.28364676]) = 5.21504
>12 f([-2.19245939]) = 4.80688
>14 f([-2.01001538]) = 4.04016
>15 f([-1.86425287]) = 3.47544
>22 f([-1.79913002]) = 3.23687
>24 f([-1.57525573]) = 2.48143
>25 f([-1.55047719]) = 2.40398
>26 f([-1.51783757]) = 2.30383
>27 f([-1.49118756]) = 2.22364
>28 f([-1.45344116]) = 2.11249
>30 f([-1.33055275]) = 1.77037
>32 f([-1.17805016]) = 1.38780
>33 f([-1.15189314]) = 1.32686
>36 f([-1.03852644]) = 1.07854
>37 f([-0.99135322]) = 0.98278
>38 f([-0.79448984]) = 0.63121
>39 f([-0.69837955]) = 0.48773
>42 f([-0.69317313]) = 0.48049
>46 f([-0.61801423]) = 0.38194
>48 f([-0.48799625]) = 0.23814
>50 f([-0.22149135]) = 0.04906
>54 f([-0.20017144]) = 0.04007
>57 f([-0.15994446]) = 0.02558
>60 f([-0.15492485]) = 0.02400
>61 f([-0.03572481]) = 0.00128
>64 f([-0.03051261]) = 0.00093
>66 f([-0.0074283]) = 0.00006
>78 f([-0.00202357]) = 0.00000
>119 f([0.00128373]) = 0.00000
>120 f([-0.00040911]) = 0.00000
>314 f([-0.00017051]) = 0.00000
Done!
f([-0.00017051]) = 0.000000
以線圖的形式查看搜索的進(jìn)度可能很有趣,該線圖顯示了每次改進(jìn)后最佳解決方案的評估變化。每當(dāng)有改進(jìn)時(shí),我們就可以更新hillclimbing()來跟蹤目標(biāo)函數(shù)的評估,并返回此分?jǐn)?shù)列表
# hill climbing local search algorithm
def hillclimbing(objective, bounds, n_iterations, step_size):
# generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
# evaluate the initial point
solution_eval = objective(solution)
# run the hill climb
scores = list()
scores.append(solution_eval)
for i in range(n_iterations):
# take a step
candidate = solution + randn(len(bounds)) * step_size
# evaluate candidate point
candidte_eval = objective(candidate)
# check if we should keep the new point
if candidte_eval = solution_eval:
# store the new point
solution, solution_eval = candidate, candidte_eval
# keep track of scores
scores.append(solution_eval)
# report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))
return [solution, solution_eval, scores]
然后,我們可以創(chuàng)建這些分?jǐn)?shù)的折線圖,以查看搜索過程中發(fā)現(xiàn)的每個(gè)改進(jìn)的目標(biāo)函數(shù)的相對變化
# line plot of best scores
pyplot.plot(scores, '.-')
pyplot.xlabel('Improvement Number')
pyplot.ylabel('Evaluation f(x)')
pyplot.show()
結(jié)合在一起,下面列出了執(zhí)行搜索并繪制搜索過程中改進(jìn)解決方案的目標(biāo)函數(shù)得分的完整示例。
# hill climbing search of a one-dimensional objective function
from numpy import asarray
from numpy.random import randn
from numpy.random import rand
from numpy.random import seed
from matplotlib import pyplot
# objective function
def objective(x):
return x[0]**2.0
# hill climbing local search algorithm
def hillclimbing(objective, bounds, n_iterations, step_size):
# generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
# evaluate the initial point
solution_eval = objective(solution)
# run the hill climb
scores = list()
scores.append(solution_eval)
for i in range(n_iterations):
# take a step
candidate = solution + randn(len(bounds)) * step_size
# evaluate candidate point
candidte_eval = objective(candidate)
# check if we should keep the new point
if candidte_eval = solution_eval:
# store the new point
solution, solution_eval = candidate, candidte_eval
# keep track of scores
scores.append(solution_eval)
# report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))
return [solution, solution_eval, scores]
# seed the pseudorandom number generator
seed(5)
# define range for input
bounds = asarray([[-5.0, 5.0]])
# define the total iterations
n_iterations = 1000
# define the maximum step size
step_size = 0.1
# perform the hill climbing search
best, score, scores = hillclimbing(objective, bounds, n_iterations, step_size)
print('Done!')
print('f(%s) = %f' % (best, score))
# line plot of best scores
pyplot.plot(scores, '.-')
pyplot.xlabel('Improvement Number')
pyplot.ylabel('Evaluation f(x)')
pyplot.show()
運(yùn)行示例將執(zhí)行搜索,并像以前一樣報(bào)告結(jié)果。創(chuàng)建一個(gè)線形圖,顯示在爬山搜索期間每個(gè)改進(jìn)的目標(biāo)函數(shù)評估。在搜索過程中,我們可以看到目標(biāo)函數(shù)評估發(fā)生了約36個(gè)變化,隨著算法收斂到最優(yōu)值,初始變化較大,而在搜索結(jié)束時(shí)變化很小,難以察覺。
鑒于目標(biāo)函數(shù)是一維的,因此可以像上面那樣直接繪制響應(yīng)面。通過將在搜索過程中找到的最佳候選解決方案繪制為響應(yīng)面中的點(diǎn),來回顧搜索的進(jìn)度可能會很有趣。我們期望沿著響應(yīng)面到達(dá)最優(yōu)點(diǎn)的一系列點(diǎn)。這可以通過首先更新hillclimbing()函數(shù)以跟蹤每個(gè)最佳候選解決方案在搜索過程中的位置來實(shí)現(xiàn),然后返回最佳解決方案列表來實(shí)現(xiàn)。
# hill climbing local search algorithm
def hillclimbing(objective, bounds, n_iterations, step_size):
# generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
# evaluate the initial point
solution_eval = objective(solution)
# run the hill climb
solutions = list()
solutions.append(solution)
for i in range(n_iterations):
# take a step
candidate = solution + randn(len(bounds)) * step_size
# evaluate candidate point
candidte_eval = objective(candidate)
# check if we should keep the new point
if candidte_eval = solution_eval:
# store the new point
solution, solution_eval = candidate, candidte_eval
# keep track of solutions
solutions.append(solution)
# report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))
return [solution, solution_eval, solutions]
然后,我們可以創(chuàng)建目標(biāo)函數(shù)響應(yīng)面的圖,并像以前那樣標(biāo)記最優(yōu)值。
# sample input range uniformly at 0.1 increments
inputs = arange(bounds[0,0], bounds[0,1], 0.1)
# create a line plot of input vs result
pyplot.plot(inputs, [objective([x]) for x in inputs], '--')
# draw a vertical line at the optimal input
pyplot.axvline(x=[0.0], ls='--', color='red')
最后,我們可以將搜索找到的候選解的序列繪制成黑點(diǎn)。
# plot the sample as black circles
pyplot.plot(solutions, [objective(x) for x in solutions], 'o', color='black')
結(jié)合在一起,下面列出了在目標(biāo)函數(shù)的響應(yīng)面上繪制改進(jìn)解序列的完整示例。
# hill climbing search of a one-dimensional objective function
from numpy import asarray
from numpy import arange
from numpy.random import randn
from numpy.random import rand
from numpy.random import seed
from matplotlib import pyplot
# objective function
def objective(x):
return x[0]**2.0
# hill climbing local search algorithm
def hillclimbing(objective, bounds, n_iterations, step_size):
# generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
# evaluate the initial point
solution_eval = objective(solution)
# run the hill climb
solutions = list()
solutions.append(solution)
for i in range(n_iterations):
# take a step
candidate = solution + randn(len(bounds)) * step_size
# evaluate candidate point
candidte_eval = objective(candidate)
# check if we should keep the new point
if candidte_eval = solution_eval:
# store the new point
solution, solution_eval = candidate, candidte_eval
# keep track of solutions
solutions.append(solution)
# report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))
return [solution, solution_eval, solutions]
# seed the pseudorandom number generator
seed(5)
# define range for input
bounds = asarray([[-5.0, 5.0]])
# define the total iterations
n_iterations = 1000
# define the maximum step size
step_size = 0.1
# perform the hill climbing search
best, score, solutions = hillclimbing(objective, bounds, n_iterations, step_size)
print('Done!')
print('f(%s) = %f' % (best, score))
# sample input range uniformly at 0.1 increments
inputs = arange(bounds[0,0], bounds[0,1], 0.1)
# create a line plot of input vs result
pyplot.plot(inputs, [objective([x]) for x in inputs], '--')
# draw a vertical line at the optimal input
pyplot.axvline(x=[0.0], ls='--', color='red')
# plot the sample as black circles
pyplot.plot(solutions, [objective(x) for x in solutions], 'o', color='black')
pyplot.show()
運(yùn)行示例將執(zhí)行爬山搜索,并像以前一樣報(bào)告結(jié)果。像以前一樣創(chuàng)建一個(gè)響應(yīng)面圖,顯示函數(shù)的熟悉的碗形,并用垂直的紅線標(biāo)記函數(shù)的最佳狀態(tài)。在搜索過程中找到的最佳解決方案的順序顯示為黑點(diǎn),沿著碗形延伸到最佳狀態(tài)。
以上就是Python實(shí)現(xiàn)隨機(jī)爬山算法的詳細(xì)內(nèi)容,更多關(guān)于Python 隨機(jī)爬山算法的資料請關(guān)注腳本之家其它相關(guān)文章!
您可能感興趣的文章:- python實(shí)現(xiàn)線性回歸算法
- Python實(shí)現(xiàn)七大查找算法的示例代碼
- Python查找算法之折半查找算法的實(shí)現(xiàn)
- Python查找算法之插補(bǔ)查找算法的實(shí)現(xiàn)
- python高效的素?cái)?shù)判斷算法
- python實(shí)現(xiàn)ROA算子邊緣檢測算法
- Python實(shí)現(xiàn)粒子群算法的示例
- python中K-means算法基礎(chǔ)知識點(diǎn)
- python 圖像增強(qiáng)算法實(shí)現(xiàn)詳解
- python入門之算法學(xué)習(xí)