主頁(yè) > 知識(shí)庫(kù) > Pytorch實(shí)現(xiàn)WGAN用于動(dòng)漫頭像生成

Pytorch實(shí)現(xiàn)WGAN用于動(dòng)漫頭像生成

熱門(mén)標(biāo)簽:電銷機(jī)器人系統(tǒng)廠家鄭州 正安縣地圖標(biāo)注app 地圖地圖標(biāo)注有嘆號(hào) 阿里電話機(jī)器人對(duì)話 qt百度地圖標(biāo)注 遼寧智能外呼系統(tǒng)需要多少錢(qián) 舉辦過(guò)冬奧會(huì)的城市地圖標(biāo)注 螳螂科技外呼系統(tǒng)怎么用 400電話申請(qǐng)資格

WGAN與GAN的不同

  • 去除sigmoid
  • 使用具有動(dòng)量的優(yōu)化方法,比如使用RMSProp
  • 要對(duì)Discriminator的權(quán)重做修整限制以確保lipschitz連續(xù)約

WGAN實(shí)戰(zhàn)卷積生成動(dòng)漫頭像 

import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import os
from anime_face_generator.dataset import ImageDataset
 
batch_size = 32
num_epoch = 100
z_dimension = 100
dir_path = './wgan_img'
 
# 創(chuàng)建文件夾
if not os.path.exists(dir_path):
  os.mkdir(dir_path)
 
 
def to_img(x):
  """因?yàn)槲覀冊(cè)谏善骼锩嬗昧藅anh"""
  out = 0.5 * (x + 1)
  return out
 
 
dataset = ImageDataset()
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
 
 
class Generator(nn.Module):
  def __init__(self):
    super().__init__()
 
    self.gen = nn.Sequential(
      # 輸入是一個(gè)nz維度的噪聲,我們可以認(rèn)為它是一個(gè)1*1*nz的feature map
      nn.ConvTranspose2d(100, 512, 4, 1, 0, bias=False),
      nn.BatchNorm2d(512),
      nn.ReLU(True),
      # 上一步的輸出形狀:(512) x 4 x 4
      nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
      nn.BatchNorm2d(256),
      nn.ReLU(True),
      # 上一步的輸出形狀: (256) x 8 x 8
      nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
      nn.BatchNorm2d(128),
      nn.ReLU(True),
      # 上一步的輸出形狀: (256) x 16 x 16
      nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
      nn.BatchNorm2d(64),
      nn.ReLU(True),
      # 上一步的輸出形狀:(256) x 32 x 32
      nn.ConvTranspose2d(64, 3, 5, 3, 1, bias=False),
      nn.Tanh() # 輸出范圍 -1~1 故而采用Tanh
      # nn.Sigmoid()
      # 輸出形狀:3 x 96 x 96
    )
 
  def forward(self, x):
    x = self.gen(x)
    return x
 
  def weight_init(m):
    # weight_initialization: important for wgan
    class_name = m.__class__.__name__
    if class_name.find('Conv') != -1:
      m.weight.data.normal_(0, 0.02)
    elif class_name.find('Norm') != -1:
      m.weight.data.normal_(1.0, 0.02)
 
 
class Discriminator(nn.Module):
  def __init__(self):
    super().__init__()
    self.dis = nn.Sequential(
      nn.Conv2d(3, 64, 5, 3, 1, bias=False),
      nn.LeakyReLU(0.2, inplace=True),
      # 輸出 (64) x 32 x 32
 
      nn.Conv2d(64, 128, 4, 2, 1, bias=False),
      nn.BatchNorm2d(128),
      nn.LeakyReLU(0.2, inplace=True),
      # 輸出 (128) x 16 x 16
 
      nn.Conv2d(128, 256, 4, 2, 1, bias=False),
      nn.BatchNorm2d(256),
      nn.LeakyReLU(0.2, inplace=True),
      # 輸出 (256) x 8 x 8
 
      nn.Conv2d(256, 512, 4, 2, 1, bias=False),
      nn.BatchNorm2d(512),
      nn.LeakyReLU(0.2, inplace=True),
      # 輸出 (512) x 4 x 4
 
      nn.Conv2d(512, 1, 4, 1, 0, bias=False),
      nn.Flatten(),
      # nn.Sigmoid() # 輸出一個(gè)數(shù)(概率)
    )
 
  def forward(self, x):
    x = self.dis(x)
    return x
 
  def weight_init(m):
    # weight_initialization: important for wgan
    class_name = m.__class__.__name__
    if class_name.find('Conv') != -1:
      m.weight.data.normal_(0, 0.02)
    elif class_name.find('Norm') != -1:
      m.weight.data.normal_(1.0, 0.02)
 
 
def save(model, filename="model.pt", out_dir="out/"):
  if model is not None:
    if not os.path.exists(out_dir):
      os.mkdir(out_dir)
    torch.save({'model': model.state_dict()}, out_dir + filename)
  else:
    print("[ERROR]:Please build a model!!!")
 
 
import QuickModelBuilder as builder
 
if __name__ == '__main__':
  one = torch.FloatTensor([1]).cuda()
  mone = -1 * one
 
  is_print = True
  # 創(chuàng)建對(duì)象
  D = Discriminator()
  G = Generator()
  D.weight_init()
  G.weight_init()
 
  if torch.cuda.is_available():
    D = D.cuda()
    G = G.cuda()
 
  lr = 2e-4
  d_optimizer = torch.optim.RMSprop(D.parameters(), lr=lr, )
  g_optimizer = torch.optim.RMSprop(G.parameters(), lr=lr, )
  d_scheduler = torch.optim.lr_scheduler.ExponentialLR(d_optimizer, gamma=0.99)
  g_scheduler = torch.optim.lr_scheduler.ExponentialLR(g_optimizer, gamma=0.99)
 
  fake_img = None
 
  # ##########################進(jìn)入訓(xùn)練##判別器的判斷過(guò)程#####################
  for epoch in range(num_epoch): # 進(jìn)行多個(gè)epoch的訓(xùn)練
    pbar = builder.MyTqdm(epoch=epoch, maxval=len(dataloader))
    for i, img in enumerate(dataloader):
      num_img = img.size(0)
      real_img = img.cuda() # 將tensor變成Variable放入計(jì)算圖中
      # 這里的優(yōu)化器是D的優(yōu)化器
      for param in D.parameters():
        param.requires_grad = True
      # ########判別器訓(xùn)練train#####################
      # 分為兩部分:1、真的圖像判別為真;2、假的圖像判別為假
 
      # 計(jì)算真實(shí)圖片的損失
      d_optimizer.zero_grad() # 在反向傳播之前,先將梯度歸0
      real_out = D(real_img) # 將真實(shí)圖片放入判別器中
      d_loss_real = real_out.mean(0).view(1)
      d_loss_real.backward(one)
 
      # 計(jì)算生成圖片的損失
      z = torch.randn(num_img, z_dimension).cuda() # 隨機(jī)生成一些噪聲
      z = z.reshape(num_img, z_dimension, 1, 1)
      fake_img = G(z).detach() # 隨機(jī)噪聲放入生成網(wǎng)絡(luò)中,生成一張假的圖片。 # 避免梯度傳到G,因?yàn)镚不用更新, detach分離
      fake_out = D(fake_img) # 判別器判斷假的圖片,
      d_loss_fake = fake_out.mean(0).view(1)
      d_loss_fake.backward(mone)
 
      d_loss = d_loss_fake - d_loss_real
      d_optimizer.step() # 更新參數(shù)
 
      # 每次更新判別器的參數(shù)之后把它們的絕對(duì)值截?cái)嗟讲怀^(guò)一個(gè)固定常數(shù)c=0.01
      for parm in D.parameters():
        parm.data.clamp_(-0.01, 0.01)
 
      # ==================訓(xùn)練生成器============================
      # ###############################生成網(wǎng)絡(luò)的訓(xùn)練###############################
      for param in D.parameters():
        param.requires_grad = False
 
      # 這里的優(yōu)化器是G的優(yōu)化器,所以不需要凍結(jié)D的梯度,因?yàn)椴皇荄的優(yōu)化器,不會(huì)更新D
      g_optimizer.zero_grad() # 梯度歸0
 
      z = torch.randn(num_img, z_dimension).cuda()
      z = z.reshape(num_img, z_dimension, 1, 1)
      fake_img = G(z) # 隨機(jī)噪聲輸入到生成器中,得到一副假的圖片
      output = D(fake_img) # 經(jīng)過(guò)判別器得到的結(jié)果
      # g_loss = criterion(output, real_label) # 得到的假的圖片與真實(shí)的圖片的label的loss
      g_loss = torch.mean(output).view(1)
      # bp and optimize
      g_loss.backward(one) # 進(jìn)行反向傳播
      g_optimizer.step() # .step()一般用在反向傳播后面,用于更新生成網(wǎng)絡(luò)的參數(shù)
 
      # 打印中間的損失
      pbar.set_right_info(d_loss=d_loss.data.item(),
                g_loss=g_loss.data.item(),
                real_scores=real_out.data.mean().item(),
                fake_scores=fake_out.data.mean().item(),
                )
      pbar.update()
      try:
        fake_images = to_img(fake_img.cpu())
        save_image(fake_images, dir_path + '/fake_images-{}.png'.format(epoch + 1))
      except:
        pass
      if is_print:
        is_print = False
        real_images = to_img(real_img.cpu())
        save_image(real_images, dir_path + '/real_images.png')
    pbar.finish()
    d_scheduler.step()
    g_scheduler.step()
    save(D, "wgan_D.pt")
    save(G, "wgan_G.pt")

到此這篇關(guān)于Pytorch實(shí)現(xiàn)WGAN用于動(dòng)漫頭像生成的文章就介紹到這了,更多相關(guān)Pytorch實(shí)現(xiàn)WGAN用于動(dòng)漫頭像生成內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • PyTorch 隨機(jī)數(shù)生成占用 CPU 過(guò)高的解決方法
  • Pytorch 保存模型生成圖片方式
  • Pytorch使用MNIST數(shù)據(jù)集實(shí)現(xiàn)CGAN和生成指定的數(shù)字方式
  • pytorch GAN生成對(duì)抗網(wǎng)絡(luò)實(shí)例
  • Pytorch實(shí)現(xiàn)基于CharRNN的文本分類與生成示例
  • pytorch::Dataloader中的迭代器和生成器應(yīng)用詳解

標(biāo)簽:合肥 淘寶好評(píng)回訪 濟(jì)源 阜新 興安盟 昭通 信陽(yáng) 隨州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《Pytorch實(shí)現(xiàn)WGAN用于動(dòng)漫頭像生成》,本文關(guān)鍵詞  Pytorch,實(shí)現(xiàn),WGAN,用于,動(dòng)漫,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《Pytorch實(shí)現(xiàn)WGAN用于動(dòng)漫頭像生成》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于Pytorch實(shí)現(xiàn)WGAN用于動(dòng)漫頭像生成的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章