遺傳算法屬于一種優(yōu)化算法。
如果你有一個(gè)待優(yōu)化函數(shù),可以考慮次算法。假設(shè)你有一個(gè)變量x,通過(guò)某個(gè)函數(shù)可以求出對(duì)應(yīng)的y,那么你通過(guò)預(yù)設(shè)的x可求出y_pred,y_pred差距與你需要的y當(dāng)然越接近越好,這就需要引入適應(yīng)度(fitness)的概念。假設(shè)
fitness = 1/(1+ads(y_pred - y)),那么誤差越小,適應(yīng)度越大,即該個(gè)體越易于存活。
設(shè)計(jì)該算法的思路如下:
(1)初始化種群,即在我需要的區(qū)間如[-100,100]內(nèi)random一堆初始個(gè)體[x1,x2,x3...],這些個(gè)體是10進(jìn)制形式的,為了后面的交叉與變異我們不妨將其轉(zhuǎn)化為二進(jìn)制形式。那么現(xiàn)在的問題是二進(jìn)制取多少位合適呢?即編碼(code)的長(zhǎng)度是多少呢?
這就涉及一些信號(hào)方面的知識(shí),比如兩位的二進(jìn)制表示的最大值是3(11),可以將區(qū)間化為4分,那么每一份區(qū)間range長(zhǎng)度range/4,我們只需要讓range/n小于我們定義的精度即可。n是二進(jìn)制需要表示的最大,可以反解出二進(jìn)制位數(shù) 。
(2)我們需要編寫編碼與解碼函數(shù)。即code:將x1,x2...化為二進(jìn)制,decode:在交叉變異后重新得到十進(jìn)制數(shù),用于計(jì)算fitness。
(3)交叉后變異函數(shù)編寫都很簡(jiǎn)單,random一個(gè)point,指定兩個(gè)x在point位置進(jìn)行切片交換即是交叉。變異也是random一個(gè)point,讓其值0變?yōu)?,1變?yōu)?。
(4)得到交叉變異后的個(gè)體,需要計(jì)算fitness進(jìn)行種群淘汰,保留fitness最高的一部分種群。
(5)將最優(yōu)的個(gè)體繼續(xù)上面的操作,直到你定義的iteration結(jié)束為止。
不說(shuō)了,上代碼:
import numpy as np
import pandas as pd
import random
from scipy.optimize import fsolve
import matplotlib.pyplot as plt
import heapq
from sklearn.model_selection import train_test_split
from tkinter import _flatten
from sklearn.utils import shuffle
from sklearn import preprocessing
from sklearn.decomposition import PCA
from matplotlib import rcParams
# 求染色體長(zhǎng)度
def getEncodeLength(decisionvariables, delta):
# 將每個(gè)變量的編碼長(zhǎng)度放入數(shù)組
lengths = []
for decisionvar in decisionvariables:
uper = decisionvar[1]
low = decisionvar[0]
# res()返回一個(gè)數(shù)組
res = fsolve(lambda x: ((uper - low) / delta - 2 ** x + 1), 30)
# ceil()向上取整
length = int(np.ceil(res[0]))
lengths.append(length)
# print("染色體長(zhǎng)度:", lengths)
return lengths
# 隨機(jī)生成初始化種群
def getinitialPopulation(length, populationSize):
chromsomes = np.zeros((populationSize, length), dtype=np.int)
for popusize in range(populationSize):
# np.random.randit()產(chǎn)生[0,2)之間的隨機(jī)整數(shù),第三個(gè)參數(shù)表示隨機(jī)數(shù)的數(shù)量
chromsomes[popusize, :] = np.random.randint(0, 2, length)
return chromsomes
# 染色體解碼得到表現(xiàn)形的解
def getDecode(population, encodelength, decisionvariables, delta):
# 得到population中有幾個(gè)元素
populationsize = population.shape[0]
length = len(encodelength)
decodeVariables = np.zeros((populationsize, length), dtype=np.float)
# 將染色體拆分添加到解碼數(shù)組decodeVariables中
for i, populationchild in enumerate(population):
# 設(shè)置起始點(diǎn)
start = 0
for j, lengthchild in enumerate(encodelength):
power = lengthchild - 1
decimal = 0
start_end = start + lengthchild
for k in range(start, start_end):
# 二進(jìn)制轉(zhuǎn)為十進(jìn)制
decimal += populationchild[k] * (2 ** power)
power = power - 1
# 從下一個(gè)染色體開始
start = start_end
lower = decisionvariables[j][0]
uper = decisionvariables[j][1]
# 轉(zhuǎn)換為表現(xiàn)形
decodevalue = lower + decimal * (uper - lower) / (2 ** lengthchild - 1)
# 將解添加到數(shù)組中
decodeVariables[i][j] = decodevalue
return decodeVariables
# 選擇新的種群
def selectNewPopulation(decodepopu, cum_probability):
# 獲取種群的規(guī)模和
m, n = decodepopu.shape
# 初始化新種群
newPopulation = np.zeros((m, n))
for i in range(m):
# 產(chǎn)生一個(gè)0到1之間的隨機(jī)數(shù)
randomnum = np.random.random()
# 輪盤賭選擇
for j in range(m):
if (randomnum cum_probability[j]):
newPopulation[i] = decodepopu[j]
break
return newPopulation
# 新種群交叉
def crossNewPopulation(newpopu, prob):
m, n = newpopu.shape
# uint8將數(shù)值轉(zhuǎn)換為無(wú)符號(hào)整型
numbers = np.uint8(m * prob)
# 如果選擇的交叉數(shù)量為奇數(shù),則數(shù)量加1
if numbers % 2 != 0:
numbers = numbers + 1
# 初始化新的交叉種群
updatepopulation = np.zeros((m, n), dtype=np.uint8)
# 隨機(jī)生成需要交叉的染色體的索引號(hào)
index = random.sample(range(m), numbers)
# 不需要交叉的染色體直接復(fù)制到新的種群中
for i in range(m):
if not index.__contains__(i):
updatepopulation[i] = newpopu[i]
# 交叉操作
j = 0
while j numbers:
# 隨機(jī)生成一個(gè)交叉點(diǎn),np.random.randint()返回的是一個(gè)列表
crosspoint = np.random.randint(0, n, 1)
crossPoint = crosspoint[0]
# a = index[j]
# b = index[j+1]
updatepopulation[index[j]][0:crossPoint] = newpopu[index[j]][0:crossPoint]
updatepopulation[index[j]][crossPoint:] = newpopu[index[j + 1]][crossPoint:]
updatepopulation[index[j + 1]][0:crossPoint] = newpopu[j + 1][0:crossPoint]
updatepopulation[index[j + 1]][crossPoint:] = newpopu[index[j]][crossPoint:]
j = j + 2
return updatepopulation
# 變異操作
def mutation(crosspopulation, mutaprob):
# 初始化變異種群
mutationpopu = np.copy(crosspopulation)
m, n = crosspopulation.shape
# 計(jì)算需要變異的基因數(shù)量
mutationnums = np.uint8(m * n * mutaprob)
# 隨機(jī)生成變異基因的位置
mutationindex = random.sample(range(m * n), mutationnums)
# 變異操作
for geneindex in mutationindex:
# np.floor()向下取整返回的是float型
row = np.uint8(np.floor(geneindex / n))
colume = geneindex % n
if mutationpopu[row][colume] == 0:
mutationpopu[row][colume] = 1
else:
mutationpopu[row][colume] = 0
return mutationpopu
# 找到重新生成的種群中適應(yīng)度值最大的染色體生成新種群
def findMaxPopulation(population, maxevaluation, maxSize):
#將數(shù)組轉(zhuǎn)換為列表
#maxevalue = maxevaluation.flatten()
maxevaluelist = maxevaluation
# 找到前100個(gè)適應(yīng)度最大的染色體的索引
maxIndex = map(maxevaluelist.index, heapq.nlargest(maxSize, maxevaluelist))
index = list(maxIndex)
colume = population.shape[1]
# 根據(jù)索引生成新的種群
maxPopulation = np.zeros((maxSize, colume))
i = 0
for ind in index:
maxPopulation[i] = population[ind]
i = i + 1
return maxPopulation
# 得到每個(gè)個(gè)體的適應(yīng)度值及累計(jì)概率
def getFitnessValue(decode,x_train,y_train):
# 得到種群的規(guī)模和決策變量的個(gè)數(shù)
popusize, decisionvar = decode.shape
fitnessValue = []
for j in range(len(decode)):
W1 = decode[j][0:20].reshape(4,5)
V1 = decode[j][20:25].T
W2 = decode[j][25:45].reshape(5,4)
V2 = decode[j][45:].T
error_all = []
for i in range(len(x_train)):
#get values of hidde layer
X2 = sigmoid(x_train[i].T.dot(W1)+V1)
#get values of prediction y
Y_hat = sigmoid(X2.T.dot(W2)+V2)
#get error when input dimension is i
error = sum(abs(Y_hat - y_train[i]))
error_all.append(error)
#get fitness when W and V is j
fitnessValue.append(1/(1+sum(error_all)))
# 得到每個(gè)個(gè)體被選擇的概率
probability = fitnessValue / np.sum(fitnessValue)
# 得到每個(gè)染色體被選中的累積概率,用于輪盤賭算子使用
cum_probability = np.cumsum(probability)
return fitnessValue, cum_probability
def getFitnessValue_accuracy(decode,x_train,y_train):
# 得到種群的規(guī)模和決策變量的個(gè)數(shù)
popusize, decisionvar = decode.shape
fitnessValue = []
for j in range(len(decode)):
W1 = decode[j][0:20].reshape(4,5)
V1 = decode[j][20:25].T
W2 = decode[j][25:45].reshape(5,4)
V2 = decode[j][45:].T
accuracy = []
for i in range(len(x_train)):
#get values of hidde layer
X2 = sigmoid(x_train[i].T.dot(W1)+V1)
#get values of prediction y
Y_hat = sigmoid(X2.T.dot(W2)+V2)
#get error when input dimension is i
accuracy.append(sum(abs(np.round(Y_hat) - y_train[i])))
fitnessValue.append(sum([m == 0 for m in accuracy])/len(accuracy))
# 得到每個(gè)個(gè)體被選擇的概率
probability = fitnessValue / np.sum(fitnessValue)
# 得到每個(gè)染色體被選中的累積概率,用于輪盤賭算子使用
cum_probability = np.cumsum(probability)
return fitnessValue, cum_probability
def getXY():
# 要打開的文件名
data_set = pd.read_csv('all-bp.csv', header=None)
# 取出“特征”和“標(biāo)簽”,并做了轉(zhuǎn)置,將列轉(zhuǎn)置為行
X_minMax1 = data_set.iloc[:, 0:12].values
# 前12列是特征
min_max_scaler = preprocessing.MinMaxScaler()
X_minMax = min_max_scaler.fit_transform(X_minMax1) # 0-1 range
transfer = PCA(n_components=0.9)
data1 = transfer.fit_transform(X_minMax)
#print('PCA processed shape:',data1.shape)
X = data1
Y = data_set.iloc[ : , 12:16].values # 后3列是標(biāo)簽
# 分訓(xùn)練和測(cè)試集
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
return x_train, x_test, y_train, y_test
def sigmoid(z):
return 1 / (1 + np.exp(-z))
上面的計(jì)算適應(yīng)度函數(shù)需要自己更具實(shí)際情況調(diào)整。
optimalvalue = []
optimalvariables = []
# 兩個(gè)決策變量的上下界,多維數(shù)組之間必須加逗號(hào)
decisionVariables = [[-100,100]]*49
# 精度
delta = 0.001
# 獲取染色體長(zhǎng)度
EncodeLength = getEncodeLength(decisionVariables, delta)
# 種群數(shù)量
initialPopuSize = 100
# 初始生成100個(gè)種群,20,5,20,4分別對(duì)用W1,V1,W2,V2
population = getinitialPopulation(sum(EncodeLength), initialPopuSize)
print("polpupation.shape:",population.shape)
# 最大進(jìn)化代數(shù)
maxgeneration = 4000
# 交叉概率
prob = 0.8
# 變異概率
mutationprob = 0.5
# 新生成的種群數(shù)量
maxPopuSize = 30
x_train, x_test, y_train, y_test = getXY()
for generation in range(maxgeneration):
# 對(duì)種群解碼得到表現(xiàn)形
print(generation)
decode = getDecode(population, EncodeLength, decisionVariables, delta)
#print('the shape of decode:',decode.shape
# 得到適應(yīng)度值和累計(jì)概率值
evaluation, cum_proba = getFitnessValue_accuracy(decode,x_train,y_train)
# 選擇新的種群
newpopulations = selectNewPopulation(population, cum_proba)
# 新種群交叉
crossPopulations = crossNewPopulation(newpopulations, prob)
# 變異操作
mutationpopulation = mutation(crossPopulations, mutationprob)
# 將父母和子女合并為新的種群
totalpopulation = np.vstack((population, mutationpopulation))
# 最終解碼
final_decode = getDecode(totalpopulation, EncodeLength, decisionVariables, delta)
# 適應(yīng)度評(píng)估
final_evaluation, final_cumprob = getFitnessValue_accuracy(final_decode,x_train,y_train)
#選出適應(yīng)度最大的100個(gè)重新生成種群
population = findMaxPopulation(totalpopulation, final_evaluation, maxPopuSize)
# 找到本輪中適應(yīng)度最大的值
optimalvalue.append(np.max(final_evaluation))
index = np.where(final_evaluation == max(final_evaluation))
optimalvariables.append(list(final_decode[index[0][0]]))
fig = plt.figure(dpi = 160,figsize=(5,4))
config = {
"font.family":"serif", #serif
"font.size": 10,
"mathtext.fontset":'stix',
}
rcParams.update(config)
plt.plot(np.arange(len(optimalvalue)), optimalvalue, color="y", lw=0.8, ls='-', marker='o', ms=8)
# 圖例設(shè)置
plt.xlabel('Iteration')
plt.ylabel('Accuracy')
plt.show()
以上就是python實(shí)現(xiàn)高效的遺傳算法的詳細(xì)內(nèi)容,更多關(guān)于python遺傳算法的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
您可能感興趣的文章:- python 如何實(shí)現(xiàn)遺傳算法
- python實(shí)現(xiàn)簡(jiǎn)單遺傳算法
- python實(shí)現(xiàn)簡(jiǎn)單遺傳算法
- Python實(shí)現(xiàn)簡(jiǎn)單遺傳算法(SGA)
- 詳解用python實(shí)現(xiàn)簡(jiǎn)單的遺傳算法
- 遺傳算法之Python實(shí)現(xiàn)代碼