目錄
- OpenCV
- 先決條件
- 我們會在本文中涵蓋7個主題
- 讀,寫和顯示圖像
- imread():
- imshow():
- imwrite():
- 讀取視頻并與網(wǎng)絡攝像頭集成
- 調(diào)整大小和裁剪圖像
- 基本的圖像過濾器使用的函數(shù)
- 將圖像轉(zhuǎn)為灰度圖像
- 將圖像轉(zhuǎn)為HSV
- 圖像模糊
- 邊緣檢測
- 膨脹
- 腐蝕
- 繪制不同的形狀
- 在圖像上書寫文字
- 檢測并裁剪臉部
- 參考文獻
OpenCV
OpenCV是計算機視覺中最受歡迎的庫,最初由intel使用C和C ++進行開發(fā)的,現(xiàn)在也可以在python中使用。該庫是一個跨平臺的開源庫,是免費使用的。OpenCV庫是一個高度優(yōu)化的庫,主要關(guān)注實時應用程序。
OpenCV庫是2500多種優(yōu)化算法的組合,可用于檢測和識別不同的人臉,實時識別圖像中的對象,使用視頻和網(wǎng)絡攝像頭對不同的人類動作進行分類,跟蹤攝像機的運動,跟蹤運動對象(例如汽車,人等),實時計數(shù)對象,縫合圖像來產(chǎn)生高分辨率圖像,從圖像數(shù)據(jù)庫中查找相似的圖像,從使用閃光燈拍攝的圖像中消除紅眼并提高圖像質(zhì)量,跟蹤眼睛的運動,跟蹤臉部等。
它擁有大約4.7萬活躍用戶社區(qū),下載量超過1800萬。谷歌,亞馬遜,特斯拉,微軟,本田等許多大公司都使用Open cv來改善他們的產(chǎn)品,它更是驅(qū)動了AI的發(fā)展。
先決條件
在開始編寫代碼之前,我們需要在設(shè)備上安裝opencv。
如果你是ProIn編程專家,并且熟悉每個IDE,那么請使用Pycharm并從設(shè)置中的程序包管理器安裝OpenCV-python。
如果你是初學者或中級程序員,或者只是想關(guān)注博客,那么我們將使用代碼編輯器而不是IDE。
只需轉(zhuǎn)到Visual Studio Code網(wǎng)站并根據(jù)你的操作系統(tǒng)下載最新版本即可。
- https://code.visualstudio.com/download
現(xiàn)在,我們將創(chuàng)建一個虛擬環(huán)境,并在其中安裝opencv。打開終端,然后使用cd定位到桌面,使用mkdir 創(chuàng)建一個名為opencv
的文件夾,然后運行以下命令。
現(xiàn)在,使用env\scripts\activate
激活環(huán)境,你會在C:\Users\username\Desktop\opencv
之前看到小括號(env)出現(xiàn)。
現(xiàn)在,只需使用pip安裝OpenCV。
我們會在本文中涵蓋7個主題
1. 讀,寫和顯示圖像
2. 讀取視頻并與網(wǎng)絡攝像頭集成
3. 調(diào)整大小和裁剪圖像
4. 基本的圖像過濾器使用的函數(shù)
5. 繪制不同的形狀
6. 在圖像上書寫文字
7. 檢測并裁剪臉部
讀,寫和顯示圖像
要使用Opencv讀取圖像,我們有imread()函數(shù); 要顯示圖像,有imshow()函數(shù),而對于書寫,我們有imwrite()函數(shù)。讓我們看看它們的語法。
imread():
img = cv2.imread("PATH_TO_IMAGE.jpg/png")
Example
img = imread("images/dog0.jpg")
imshow():
cv2.imshow("WINDOW NAME",IMG_VAR)
Example
imshow("Dog Image",img)
imwrite():
cv2.imwrite(FILENAME, IMAGE)
filename: A string representing the file name. The filename must include image format like .jpg, .png, etc.
image: It is the image that is to be saved.
Example
cv2.imwrite('images/img',img)
讀取視頻并與網(wǎng)絡攝像頭集成
讀取視頻文件與在OpenCV中讀取圖像文件非常相似,區(qū)別在于我們使用了cv2.videocapture。
句法
video = cv2.VideoCapture("FILEPATH.mp4")
Example
video = cv2.VideoCapture("video/dog/dog.mp4")
視頻是許多幀結(jié)合在一起的集合,每幀都是一幅圖像。要使用OpenCV觀看視頻,我們只需要使用while循環(huán)顯示視頻的每一幀。
while True:
success , img = cap.read()
cv2.imshow("Video",img)
if cv2.waitKey(1) 0xff==ord('q'):##key 'q' will break the loop
break
要與網(wǎng)絡攝像頭集成,我們需要傳遞網(wǎng)絡攝像頭的端口值而不是視頻路徑。如果你使用的是筆記本電腦,但沒有連接任何外部網(wǎng)絡攝像頭,則只需傳遞參數(shù)0;如果你有外部網(wǎng)絡攝像頭,則傳遞參數(shù)1。
cap = cv2.VideoCapture(0)
cap.set(3,640) ## Frame width
cap.set(4,480) ## Frame Height
cap.set(10,100) ## Brightness
while True:
success, img = cap.read()
cv2.imshow("Video",img)
if cv2.waitKey(1) 0xff == ord('q'):
break
調(diào)整大小和裁剪圖像
調(diào)整大小是更改圖像形狀的過程。在Opencv中,我們可以使用resize函數(shù)調(diào)整圖像形狀的大小。
句法
cv2.resize(IMG,(WIDTH,HEIGHT))
IMG: image which we want to resize
WIDTH: new width of the resize image
HEIGHT: new height of the resize image
Example
cv2.resize(img,(224,224))
要首先調(diào)整圖像的大小,我們需要知道圖像的形狀。我們可以使用shape來找到任何圖像的形狀,然后根據(jù)圖像形狀,可以增加或減小圖像的大小。讓我們看看示例。
import cv2
img = cv2.imread("images/img0.jpg") ##Choose any image
print(img.shape)
imgResize = cv2.resize(img,(224,224)) ##Decrease size
imgResize2 = cv2.resize(img,(1024,1024)) ##Increase size
cv2.imshow("Image",img)
cv2.imshow("Image Resize",imgResize)
cv2.imshow("Image Increase size",imgResize2)
print(imgResize.shape)
cv2.waitKey(0)
如果你不想對寬度和高度進行硬編碼,也可以使用形狀,然后使用索引來增加寬度和高度。
import cv2
img = cv2.imread("images/img0.jpg") ##Choose any image
print(img.shape)
shape = img.shape
imgResize = cv2.resize(img,(shape[0]//2,shape[1]//2))##Decrease size
imgResize2 = cv2.resize(img,(shape[0]*2,shape[1]*2)) ##Increase size
cv2.imshow("Image",img)
cv2.imshow("Image Resize",imgResize)
cv2.imshow("Image Increase size",imgResize2)
print(imgResize.shape)
cv2.waitKey(0)
裁剪圖像
裁剪是獲取圖像的一部分過程。在OpenCV中,我們可以通過定義裁剪后的矩形坐標來執(zhí)行裁剪。
句法
imgCropped = img[y1:y2, x1:x2]
(x1,y1): top-left vertex
(x2,y2): bottom-right vertex
Example
imgCropped = img[0:100,200:200]
使用裁剪方法,讓我們嘗試從圖像中獲取蒙娜麗莎的臉。
import cv2
img = cv2.imread("images/img0.jpg")
imgCropped = img[50:250,120:330]
cv2.imshow("Image cropped",imgCropped)
cv2.imshow("Image",img)
cv2.waitKey(0)
你也可以使用paint來找到(x1,y1),(x2,y2)的正確坐標。
右鍵單擊圖像并保存,嘗試從圖像中獲取王卡。
提示:使用paint來找到正確的坐標,最后使用調(diào)整大小來增加裁剪圖像的大小。
“在尋求解決方案之前,請嘗試自己動手做?!?br />
👉解決方案- https://gist.github.com/Abhayparashar31/9b01473431de765c0a73e81271233d91
基本的圖像過濾器使用的函數(shù)
我們可以在圖像上使用許多基本的濾鏡操作,例如將圖像轉(zhuǎn)換為灰度圖像,模糊圖像等等。讓我們一一看一下比較重要的操作。
將圖像轉(zhuǎn)為灰度圖像
要將圖像轉(zhuǎn)換為灰度,我們可以使用一個函數(shù)cvtColor,這里我們將cv2.COLOR_BGR2GRAY作為參數(shù)傳遞。
imgGray = cv2.cvtColor(IMG,cv2.CODE)
IMG: Original image
CODE: Conversion code for Gray(COLOR_BGR2GRAY)
Example
imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
將圖像轉(zhuǎn)為HSV
要將圖像轉(zhuǎn)換為HSV,我們可以使用函數(shù)cvtColor,這里我們將cv2.COLOR_BGR2HSV作為參數(shù)傳遞。它主要用于對象跟蹤。
imgGray = cv2.cvtColor(IMG,cv2.CODE)
IMG: Original image
CODE: Conversion code for Gray(COLOR_BGR2HSV)
Example
imgHsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
圖像模糊
模糊用于去除圖像中的多余噪聲,也稱為平滑,這是對圖像應用低通濾波器的過程。要在Opencv中使用模糊,我們有一個函數(shù)GaussianBlur。
imgBlur = cv2.GaussianBlur(img,(sigmaX,sigmaY),kernalSize)
kernalsize − A Size object representing the size of the kernel.
sigmaX − A variable representing the Gaussian kernel standard deviation in X direction.
sigmaY - same as sigmaX
Exmaple
imgBlur = cv2.GaussianBlur(img,(3,3),0)
邊緣檢測
在OpenCV中,我們使用Canny邊緣檢測器來檢測圖像中的邊緣,也有不同的邊緣檢測器,但最著名的是Canny邊緣檢測器。Canny邊緣檢測器是一種邊緣檢測算子,它使用多階段算法來檢測圖像中的大范圍邊緣,它由John F. Canny在1986年開發(fā)。
imgCanny = cv2.Canny(img,threshold1,threshold2)
threshold1,threshold2:Different values of threshold different for every images
Example
imgCanny = cv2.Canny(img,100,150)
膨脹
膨脹是用來增加圖像中邊緣的大小。首先,我們定義一個大小為奇數(shù)(5,5)的核矩陣,然后利用核函數(shù)對圖像進行放大。我們對Canny邊緣檢測器的輸出圖像進行了放大處理。
kernel = np.ones((5,5),np.uint8) ## DEFINING KERNEL OF 5x5
imgDialation = cv2.dilate(imgCanny,kernel,iterations=1) ##DIALATION
腐蝕
腐蝕是擴張的反面,它用于減小圖像邊緣的尺寸。首先,我們定義一個奇數(shù)(5,5)的核矩陣大小,然后使用核對圖像執(zhí)行腐蝕。我們對Canny邊緣檢測器的輸出圖像施加腐蝕。
kernel = np.ones((5,5),np.uint8) ## DEFINING KERNEL OF 5x5
imgDialation = cv2.erode(imgCanny,kernel,iterations=1) ##EROSION
現(xiàn)在,在同一程序中將所有基礎(chǔ)函數(shù)應用于Monalisa映像。
繪制不同的形狀
我們可以使用OpenCV來繪制矩形,圓形,直線等不同的形狀。
矩形:
要在圖像上繪制矩形,我們使用矩形函數(shù)。在函數(shù)中,我們傳遞寬度,高度,X,Y,RGB中的顏色,厚度作為參數(shù)。
cv2.rectangle(img,(w,h),(x,y),(R,G,B),THICKNESS)
w: width
h: height
x: distance from x axis
y: distance from y axis
R,G,B: color in RGB form (255,255,0)
THICKNESS: thickness of rectangel(integer)
Example
cv2.rectangle(img,(100,300),(200,300),(255,0,255),2)
圓:
要繪制一個圓,我們使用cv2.circle。我們傳遞x,y,半徑大小,RGB形式的顏色,厚度作為參數(shù)。
cv2.circle(img,(x,y),radius,(R,G,B),THICKNESS)
x: distance from x axis
y: distance from y axis
radius: size of radius(integer)
R,G,B: color in RGB form (255,255,0)
THICKNESS: thickness of rectangel(integer)
Example
cv2.circle(img,(200,130),90,(255,255,0),2)
線:
要繪制一條線,我們使用cv2.line,使用起點(x1,y1),終點(x2,y2),RGB形式的顏色,厚度作為參數(shù)。
cv2.line(img,(x1,y1),(x2,y2),(R,G,B),THICKNESS)
x1,y1: start point of line (integer)
x2,y2: end point of line (integer)
R,G,B: color in RGB form (255,255,0)
THICKNESS: thickness of rectangel(integer)
Example
cv2.line(img,(110,260),(300,260),(0,255,0),3)
在圖像上書寫文字
在OpenCV中,我們有一個函數(shù)cv2.puttext, 可以在特定位置的圖像上寫文本。它以圖像,文本,x,y,顏色,字體,字體比例,粗細為輸入。
cv2.putText(img,text,(x,y),FONT,FONT_SCALE,(R,G,B),THICKNESS)
img: image to put text on
text: text to put on image
X: text distance from X axis
Y: text distance from Y axis
FONT: Type of FONT (ALL FONT TYPES)
FONT_SCALE: Scale of Font(Integer)
R,G,B: color in RGB form (255,255,0)
THICKNESS: thickness of rectangel(integer)
Example
cv2.putText(img,"HELLO",(120,250),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2)
下載Monalisa圖片。
任務:使用形狀和文本為左側(cè)圖像中所示的Monalisa臉創(chuàng)建框架。
提示:首先是一個圓形,然后是矩形,然后根據(jù)圓形和矩形放置文本,最后根據(jù)文本放置一行。
👉解決方案- https://gist.github.com/Abhayparashar31/af36bf25ce61345266db4b54aba33be1
檢測并裁剪臉部
在創(chuàng)建人臉識別系統(tǒng)時,人臉檢測是非常有用的。在OpenCV中,我們提供了許多可用于不同目的的預訓練haar級聯(lián)分類器。在OpenCV GitHub上查看分類器的完整列表。
- https://github.com/opencv/opencv/tree/master/data/haarcascades
為了檢測OpenCV中的人臉,我們使用了haarcascade_frontalface_default.xml分類器,它會返回我們圖像的四個坐標(w,h,x,y),使用這些坐標,我們將在臉部上繪制一個矩形,然后使用相同的坐標來裁剪臉部?,F(xiàn)在使用imwrite,我們將裁剪的圖像保存在目錄中。
import cv2
# Load the cascade
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Read the input image
img = cv2.imread('images/img0.jpg')
# Convert into grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_cascade.detectMultiScale(gray, 1.3, 4)
# Draw rectangle around the faces
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
# Cropping Face
crop_face = img[y:y + h, x:x + w]
#Saving Cropped Face
cv2.imwrite(str(w) + str(h) + '_faces.jpg', crop_face)
cv2.imshow('img', img)
cv2.imshow("imgcropped",crop_face)
cv2.waitKey()
參考文獻
[1] https://opencv.org/about/
[2] https://pypi.org/project/opencv-python/
[3] https://www.murtazahassan.com/
以上就是Python OpenCV快速入門教程的詳細內(nèi)容,更多關(guān)于Python OpenCV入門教程的資料請關(guān)注腳本之家其它相關(guān)文章!
您可能感興趣的文章:- 使用python和opencv的mask實現(xiàn)摳圖疊加
- Python opencv缺陷檢測的實現(xiàn)及問題解決
- python讀取并顯示圖片的三種方法(opencv、matplotlib、PIL庫)
- python opencv常用圖形繪制方法(線段、矩形、圓形、橢圓、文本)
- python OpenCV學習筆記
- python基于OpenCV模板匹配識別圖片中的數(shù)字
- python-opencv中的cv2.inRange函數(shù)用法說明