主頁 > 知識庫 > 關(guān)于keras多任務(wù)多l(xiāng)oss回傳的思考

關(guān)于keras多任務(wù)多l(xiāng)oss回傳的思考

熱門標(biāo)簽:開封語音外呼系統(tǒng)代理商 400電話辦理哪種 開封自動外呼系統(tǒng)怎么收費(fèi) 手機(jī)網(wǎng)頁嵌入地圖標(biāo)注位置 地圖標(biāo)注線上如何操作 電銷機(jī)器人的風(fēng)險(xiǎn) 河北防封卡電銷卡 應(yīng)電話機(jī)器人打電話違法嗎 天津電話機(jī)器人公司

如果有一個(gè)多任務(wù)多l(xiāng)oss的網(wǎng)絡(luò),那么在訓(xùn)練時(shí),loss是如何工作的呢?

比如下面:

model = Model(inputs = input, outputs = [y1, y2])
l1 = 0.5
l2 = 0.3
model.compile(loss = [loss1, loss2], loss_weights=[l1, l2], ...)

其實(shí)我們最終得到的loss為

final_loss = l1 * loss1 + l2 * loss2

我們最終的優(yōu)化效果是最小化final_loss。

問題來了,在訓(xùn)練過程中,是否loss2只更新得到y(tǒng)2的網(wǎng)絡(luò)通路,還是loss2會更新所有的網(wǎng)絡(luò)層呢?

此問題的關(guān)鍵在梯度回傳上,即反向傳播算法。

所以loss1只對x1和x2有影響,而loss2只對x1和x3有影響。

補(bǔ)充:keras 多個(gè)LOSS總和定義

用字典形式,名字是模型中輸出那一層的名字,這里的loss可以是自己定義的,也可是自帶的

補(bǔ)充:keras實(shí)戰(zhàn)-多類別分割loss實(shí)現(xiàn)

本文樣例均為3d數(shù)據(jù)的onehot標(biāo)簽形式,即y_true(batch_size,x,y,z,class_num)

1、dice loss

def dice_coef_fun(smooth=1):
    def dice_coef(y_true, y_pred):
        #求得每個(gè)sample的每個(gè)類的dice
        intersection = K.sum(y_true * y_pred, axis=(1,2,3))
        union = K.sum(y_true, axis=(1,2,3)) + K.sum(y_pred, axis=(1,2,3))
        sample_dices=(2. * intersection + smooth) / (union + smooth) #一維數(shù)組 為各個(gè)類別的dice
        #求得每個(gè)類的dice
        dices=K.mean(sample_dices,axis=0)
        return K.mean(dices) #所有類別dice求平均的dice
    return dice_coef
 
def dice_coef_loss_fun(smooth=0):
    def dice_coef_loss(y_true,y_pred):
        return 1-1-dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred)
    return dice_coef_loss

2、generalized dice loss

def generalized_dice_coef_fun(smooth=0):
    def generalized_dice(y_true, y_pred):
        # Compute weights: "the contribution of each label is corrected by the inverse of its volume"
        w = K.sum(y_true, axis=(0, 1, 2, 3))
        w = 1 / (w ** 2 + 0.00001)
        # w為各個(gè)類別的權(quán)重,占比越大,權(quán)重越小
        # Compute gen dice coef:
        numerator = y_true * y_pred
        numerator = w * K.sum(numerator, axis=(0, 1, 2, 3))
        numerator = K.sum(numerator)
 
        denominator = y_true + y_pred
        denominator = w * K.sum(denominator, axis=(0, 1, 2, 3))
        denominator = K.sum(denominator)
 
        gen_dice_coef = numerator / denominator
 
        return  2 * gen_dice_coef
    return generalized_dice
 
def generalized_dice_loss_fun(smooth=0):
    def generalized_dice_loss(y_true,y_pred):
        return 1 - generalized_dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred)
    return generalized_dice_loss

3、tversky coefficient loss

# Ref: salehi17, "Twersky loss function for image segmentation using 3D FCDN"
# -> the score is computed for each class separately and then summed
# alpha=beta=0.5 : dice coefficient
# alpha=beta=1   : tanimoto coefficient (also known as jaccard)
# alpha+beta=1   : produces set of F*-scores
# implemented by E. Moebel, 06/04/18
def tversky_coef_fun(alpha,beta):
    def tversky_coef(y_true, y_pred):
        p0 = y_pred  # proba that voxels are class i
        p1 = 1 - y_pred  # proba that voxels are not class i
        g0 = y_true
        g1 = 1 - y_true
 
        # 求得每個(gè)sample的每個(gè)類的dice
        num = K.sum(p0 * g0, axis=( 1, 2, 3))
        den = num + alpha * K.sum(p0 * g1,axis= ( 1, 2, 3)) + beta * K.sum(p1 * g0, axis=( 1, 2, 3))
        T = num / den  #[batch_size,class_num]
        
        # 求得每個(gè)類的dice
        dices=K.mean(T,axis=0) #[class_num]
        
        return K.mean(dices)
    return tversky_coef
 
def tversky_coef_loss_fun(alpha,beta):
    def tversky_coef_loss(y_true,y_pred):
        return 1-tversky_coef_fun(alpha=alpha,beta=beta)(y_true=y_true,y_pred=y_pred)
    return tversky_coef_loss

4、IoU loss

def IoU_fun(eps=1e-6):
    def IoU(y_true, y_pred):
        # if np.max(y_true) == 0.0:
        #     return IoU(1-y_true, 1-y_pred) ## empty image; calc IoU of zeros
        intersection = K.sum(y_true * y_pred, axis=[1,2,3])
        union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) - intersection
        #
        ious=K.mean((intersection + eps) / (union + eps),axis=0)
        return K.mean(ious)
    return IoU
 
def IoU_loss_fun(eps=1e-6):
    def IoU_loss(y_true,y_pred):
        return 1-IoU_fun(eps=eps)(y_true=y_true,y_pred=y_pred)
    return IoU_loss

以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • Keras loss函數(shù)剖析
  • 解決keras GAN訓(xùn)練是loss不發(fā)生變化,accuracy一直為0.5的問題
  • keras中epoch,batch,loss,val_loss用法說明
  • 使用keras框架cnn+ctc_loss識別不定長字符圖片操作
  • keras 自定義loss層+接受輸入實(shí)例
  • 對Keras自帶Loss Function的深入研究

標(biāo)簽:蘭州 駐馬店 宿遷 常州 山東 成都 六盤水 江蘇

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《關(guān)于keras多任務(wù)多l(xiāng)oss回傳的思考》,本文關(guān)鍵詞  關(guān)于,keras,多任務(wù),多,loss,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《關(guān)于keras多任務(wù)多l(xiāng)oss回傳的思考》相關(guān)的同類信息!
  • 本頁收集關(guān)于關(guān)于keras多任務(wù)多l(xiāng)oss回傳的思考的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章