主頁 > 知識庫 > 在Python中如何使用yield

在Python中如何使用yield

熱門標簽:騰訊地圖標注沒法顯示 海外網(wǎng)吧地圖標注注冊 孝感營銷電話機器人效果怎么樣 打電話機器人營銷 南陽打電話機器人 ai電銷機器人的優(yōu)勢 地圖標注自己和別人標注區(qū)別 聊城語音外呼系統(tǒng) 商家地圖標注海報

一、生成器

如果在一個方法內(nèi),包含了 yield 關鍵字,那么這個函數(shù)就是一個「生成器」。

生成器其實就是一個特殊的迭代器,它可以像迭代器那樣,迭代輸出方法內(nèi)的每個元素。

我們來看一個包含 yield 關鍵字的方法:

# coding: utf8

# 生成器
def gen(n):
    for i in range(n):
        yield i

g = gen(5)      # 創(chuàng)建一個生成器
print(g)        # generator object gen at 0x10bb46f50>
print(type(g))  # type 'generator'>

# 迭代生成器中的數(shù)據(jù)
for i in g:
    print(i)
    
# Output:
# 0 1 2 3 4

注意,在這個例子中,當我們執(zhí)行 g = gen(5) 時,gen 中的代碼其實并沒有執(zhí)行,此時我們只是創(chuàng)建了一個「生成器對象」,它的類型是 generator。

然后,當我們執(zhí)行 for i in g,每執(zhí)行一次循環(huán),就會執(zhí)行到 yield 處,返回一次 yield 后面的值。

這個迭代過程是和迭代器最大的區(qū)別。

換句話說,如果我們想輸出 5 個元素,在創(chuàng)建生成器時,這個 5 個元素其實還并沒有產(chǎn)生,什么時候產(chǎn)生呢?只有在執(zhí)行for循環(huán)遇到 yield 時,才會依次生成每個元素。

此外,生成器除了和迭代器一樣實現(xiàn)迭代數(shù)據(jù)之外,還包含了其他方法:

  • generator.__next__():執(zhí)行 for 時調(diào)用此方法,每次執(zhí)行到 yield 就會停止,然后返回 yield 后面的值,如果沒有數(shù)據(jù)可迭代,拋出 StopIterator 異常,for 循環(huán)結束
  • generator.send(value):外部傳入一個值到生成器內(nèi)部,改變 yield 前面的值
  • generator.throw(type[, value[, traceback]]):外部向生成器拋出一個異常
  • generator.close():關閉生成器

通過使用生成器的這些方法,我們可以完成很多有意思的功能。

二、next

先來看生成器的 __next__ 方法,我們看下面這個例子。

# coding: utf8

def gen(n):
    for i in range(n):
        print('yield before')
        yield i
        print('yield after')

g = gen(3)      # 創(chuàng)建一個生成器
print(g.__next__())  # 0
print('----')
print(g.__next__())  # 1
print('----')
print(g.__next__())  # 2
print('----')
print(g.__next__())  # StopIteration

# Output:
# yield before
# 0
# ----
# yield after
# yield before
# 1
# ----
# yield after
# yield before
# 2
# ----
# yield after
# Traceback (most recent call last):
#   File "gen.py", line 16, in module>
#     print(g.__next__())  # StopIteration
# StopIteration

在這個例子中,我們定義了 gen 方法,這個方法包含了 yield 關鍵字。然后我們執(zhí)行 g = gen(3) 創(chuàng)建一個生成器,但是這次沒有執(zhí)行 for 去迭代它,而是多次調(diào)用 g.__next__() 去輸出生成器中的元素。

我們看到,當執(zhí)行 g.__next__()時,代碼就會執(zhí)行到 yield 處,然后返回 yield 后面的值,如果繼續(xù)調(diào)用 g.__next__(),注意,你會發(fā)現(xiàn),這次執(zhí)行的開始位置,是上次 yield 結束的地方,并且它還保留了上一次執(zhí)行的上下文,繼續(xù)向后迭代。

這就是使用 yield 的作用,在迭代生成器時,每一次執(zhí)行都可以保留上一次的狀態(tài),而不是像普通方法那樣,遇到 return 就返回結果,下一次執(zhí)行只能再次重復上一次的流程。

生成器除了能保存狀態(tài)之外,我們還可以通過其他方式,改變其內(nèi)部的狀態(tài),這就是下面要講的 sendthrow 方法。

三、send

上面的例子中,我們只展示了在 yield 后有值的情況,其實還可以使用 j = yield i 這種語法,我們看下面的代碼:

# coding: utf8

def gen():
    i = 1
    while True:
        j = yield i
        i *= 2
        if j == -1:
            break

此時如果我們執(zhí)行下面的代碼:

for i in gen():
    print(i)
    time.sleep(1)

輸出結果會是 1 2 4 8 16 32 64 ... 一直循環(huán)下去, 直到我們殺死這個進程才能停止。

這段代碼一直循環(huán)的原因在于,它無法執(zhí)行到 j == -1 這個分支里 break 出來,如果我們想讓代碼執(zhí)行到這個地方,如何做呢?

這里就要用到生成器的 send 方法了,send 方法可以把外部的值傳入生成器內(nèi)部,從而改變生成器的狀態(tài)。

g = gen()   # 創(chuàng)建一個生成器
print(g.__next__())  # 1
print(g.__next__())  # 2
print(g.__next__())  # 4
# send 把 -1 傳入生成器內(nèi)部 走到了 j = -1 這個分支
print(g.send(-1))   # StopIteration 迭代停止

當我們執(zhí)行 g.send(-1) 時,相當于把 -1 傳入到了生成器內(nèi)部,然后賦值給了 yield 前面的 j,此時 j = -1,然后這個方法就會 break 出來,不會繼續(xù)迭代下去。

四、throw

外部除了可以向生成器內(nèi)部傳入一個值外,還可以傳入一個異常,也就是調(diào)用 throw 方法:

# coding: utf8

def gen():
    try:
        yield 1
    except ValueError:
        yield 'ValueError'
    finally:
        print('finally')

g = gen()   # 創(chuàng)建一個生成器
print(g.__next__()) # 1
# 向生成器內(nèi)部傳入異常 返回ValueError
print(g.throw(ValueError))

# Output:
# 1
# ValueError
# finally

這個例子創(chuàng)建好生成器后,使用 g.throw(ValueError) 的方式,向生成器內(nèi)部傳入了一個異常,走到了生成器異常處理的分支邏輯。

五、close

生成器的 close 方法也比較簡單,就是手動關閉這個生成器,關閉后的生成器無法再進行操作。

>>> g = gen()
>>> g.close() # 關閉生成器
>>> g.__next__() # 無法迭代數(shù)據(jù)
Traceback (most recent call last):
  File "stdin>", line 1, in module>
StopIteration

close 方法我們在開發(fā)中使用得比較少,了解一下就好。

六、使用場景

了解了 yield 和生成器的使用方式,那么 yield生成器一般用在哪些業(yè)務場景中呢?

下面我介紹幾個例子,分別是大集合的生成、簡化代碼結構、協(xié)程與并發(fā),你可以參考這些使用場景來使用 yield。

大集合的生成

如果你想生成一個非常大的集合,如果使用 list 創(chuàng)建一個集合,這會導致在內(nèi)存中申請一個很大的存儲空間,例如想下面這樣:

# coding: utf8

def big_list():
    result = []
    for i in range(10000000000):
        result.append(i)
    return result

# 一次性在內(nèi)存中生成大集合 內(nèi)存占用非常大
for i in big_list():
    print(i)

這種場景,我們使用生成器就能很好地解決這個問題。

因為生成器只有在執(zhí)行到 yield 時才會迭代數(shù)據(jù),這時只會申請需要返回元素的內(nèi)存空間,代碼可以這樣寫:

# coding: utf8

def big_list():
    for i in range(10000000000):
        yield i

# 只有在迭代時 才依次生成元素 減少內(nèi)存占用
for i in big_list():
    print(i)

簡化代碼結構

我們在開發(fā)時還經(jīng)常遇到這樣一種場景,如果一個方法要返回一個 list,但這個 list 是多個邏輯塊組合后才能產(chǎn)生的,這就會導致我們的代碼結構變得很復雜:

# coding: utf8

def gen_list():
    # 多個邏輯塊 組成生成一個列表
    result = []
    for i in range(10):
        result.append(i)
    for j in range(5):
        result.append(j * j)
    for k in [100, 200, 300]:
        result.append(k)
    return result
    
for item in gen_list():
    print(item)

這種情況下,我們只能在每個邏輯塊內(nèi)使用 appendlist 中追加元素,代碼寫起來比較啰嗦。

此時如果使用 yield 來生成這個 list,代碼就簡潔很多:

# coding: utf8

def gen_list():
    # 多個邏輯塊 使用yield 生成一個列表
    for i in range(10):
        yield i
    for j in range(5):
        yield j * j
    for k in [100, 200, 300]:
        yield k
        
for item in gen_list():
    print(i)

使用 yield 后,就不再需要定義 list 類型的變量,只需在每個邏輯塊直接 yield 返回元素即可,可以達到和前面例子一樣的功能。

我們看到,使用 yield 的代碼更加簡潔,結構也更清晰,另外的好處是只有在迭代元素時才申請內(nèi)存空間,降低了內(nèi)存資源的消耗。

七、協(xié)程與并發(fā)

還有一種場景是 yield 使用非常多的,那就是「協(xié)程與并發(fā)」。

如果我們想提高程序的執(zhí)行效率,通常會使用多進程、多線程的方式編寫程序代碼,最常用的編程模型就是「生產(chǎn)者-消費者」模型,即一個進程 / 線程生產(chǎn)數(shù)據(jù),其他進程 / 線程消費數(shù)據(jù)。

在開發(fā)多進程、多線程程序時,為了防止共享資源被篡改,我們通常還需要加鎖進行保護,這樣就增加了編程的復雜度。

在 Python 中,除了使用進程和線程之外,我們還可以使用「協(xié)程」來提高代碼的運行效率。

什么是協(xié)程?

簡單來說,由多個程序塊組合協(xié)作執(zhí)行的程序,稱之為「協(xié)程」。

而在 Python 中使用「協(xié)程」,就需要用到 yield 關鍵字來配合。

可能這么說還是太好理解,我們用 yield 實現(xiàn)一個協(xié)程生產(chǎn)者、消費者的例子:

# coding: utf8

def consumer():
    i = None
    while True:
        # 拿到 producer 發(fā)來的數(shù)據(jù)
        j = yield i 
        print('consume %s' % j)

def producer(c):
    c.__next__()
    for i in range(5):
        print('produce %s' % i)
        # 發(fā)數(shù)據(jù)給 consumer
        c.send(i)
    c.close()

c = consumer()
producer(c)

# Output:
# produce 0
# consume 0
# produce 1
# consume 1
# produce 2
# consume 2
# produce 3
# consume 3
...

這個程序的執(zhí)行流程如下:

1.c = consumer() 創(chuàng)建一個生成器對象

2.producer(c) 開始執(zhí)行,c.__next()__會啟動生成器 consumer 直到代碼運行到 j = yield i 處,此時 consumer 第一次執(zhí)行完畢,返回

3.producer 函數(shù)繼續(xù)向下執(zhí)行,直到 c.send(i)處,這里利用生成器的 send 方法,向 consumer 發(fā)送數(shù)據(jù)

4.consumer 函數(shù)被喚醒,從 j = yield i 處繼續(xù)開始執(zhí)行,并且接收到 producer 傳來的數(shù)據(jù)賦值給 j,然后打印輸出,直到再次執(zhí)行到 yield 處,返回

5.producer 繼續(xù)循環(huán)執(zhí)行上面的過程,依次發(fā)送數(shù)據(jù)給 cosnumer,直到循環(huán)結束

6.最終 c.close() 關閉 consumer 生成器,程序退出

在這個例子中我們發(fā)現(xiàn),程序在 producerconsumer 這 2 個函數(shù)之間來回切換執(zhí)行,相互協(xié)作,完成了生產(chǎn)任務、消費任務的業(yè)務場景,最重要的是,整個程序是在單進程單線程下完成的。

到此這篇關于在Python中如何使用yield的文章就介紹到這了,更多相關yield的用法內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • python如何正確使用yield
  • 通過實例簡單了解python yield使用方法
  • python使用yield壓平嵌套字典的超簡單方法
  • Python yield 使用方法淺析
  • Python yield的使用詳解

標簽:聊城 六盤水 楊凌 撫州 揚州 迪慶 牡丹江 南寧

巨人網(wǎng)絡通訊聲明:本文標題《在Python中如何使用yield》,本文關鍵詞  在,Python,中,如何,使用,yield,;如發(fā)現(xiàn)本文內(nèi)容存在版權問題,煩請?zhí)峁┫嚓P信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《在Python中如何使用yield》相關的同類信息!
  • 本頁收集關于在Python中如何使用yield的相關信息資訊供網(wǎng)民參考!
  • 推薦文章