本文實例為大家分享了Opencv Python實現(xiàn)兩幅圖像匹配的具體代碼,供大家參考,具體內(nèi)容如下
原圖
import cv2
img1 = cv2.imread('SURF_2.jpg', cv2.IMREAD_GRAYSCALE)
img1 = cv2.resize(img1,dsize=(600,400))
img2 = cv2.imread('SURF_1.jpg', cv2.IMREAD_GRAYSCALE)
img2 = cv2.resize(img2,dsize=(600,400))
image1 = img1.copy()
image2 = img2.copy()
#創(chuàng)建一個SURF對象
surf = cv2.xfeatures2d.SURF_create(25000)
#SIFT對象會使用Hessian算法檢測關(guān)鍵點,并且對每個關(guān)鍵點周圍的區(qū)域計算特征向量。該函數(shù)返回關(guān)鍵點的信息和描述符
keypoints1,descriptor1 = surf.detectAndCompute(image1,None)
keypoints2,descriptor2 = surf.detectAndCompute(image2,None)
# print('descriptor1:',descriptor1.shape(),'descriptor2',descriptor2.shape())
#在圖像上繪制關(guān)鍵點
image1 = cv2.drawKeypoints(image=image1,keypoints = keypoints1,outImage=image1,color=(255,0,255),flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
image2 = cv2.drawKeypoints(image=image2,keypoints = keypoints2,outImage=image2,color=(255,0,255),flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
#顯示圖像
cv2.imshow('surf_keypoints1',image1)
cv2.imshow('surf_keypoints2',image2)
cv2.waitKey(20)
matcher = cv2.FlannBasedMatcher()
matchePoints = matcher.match(descriptor1,descriptor2)
# print(type(matchePoints),len(matchePoints),matchePoints[0])
#提取強匹配特征點
minMatch = 1
maxMatch = 0
for i in range(len(matchePoints)):
if minMatch > matchePoints[i].distance:
minMatch = matchePoints[i].distance
if maxMatch matchePoints[i].distance:
maxMatch = matchePoints[i].distance
print('最佳匹配值是:',minMatch)
print('最差匹配值是:',maxMatch)
#獲取排雷在前邊的幾個最優(yōu)匹配結(jié)果
goodMatchePoints = []
for i in range(len(matchePoints)):
if matchePoints[i].distance minMatch + (maxMatch-minMatch)/16:
goodMatchePoints.append(matchePoints[i])
#繪制最優(yōu)匹配點
outImg = None
outImg = cv2.drawMatches(img1,keypoints1,img2,keypoints2,goodMatchePoints,outImg,
matchColor=(0,255,0),flags=cv2.DRAW_MATCHES_FLAGS_DEFAULT)
cv2.imshow('matche',outImg)
cv2.waitKey(0)
cv2.destroyAllWindows()
原圖
#coding=utf-8
import cv2
from matplotlib import pyplot as plt
img=cv2.imread('xfeatures2d.SURF_create2.jpg',0)
# surf=cv2.SURF(400) #Hessian閾值400
# kp,des=surf.detectAndCompute(img,None)
# leng=len(kp)
# print(leng)
# 關(guān)鍵點太多,重取閾值
surf=cv2.cv2.xfeatures2d.SURF_create(50000) #Hessian閾值50000
kp,des=surf.detectAndCompute(img,None)
leng=len(kp)
print(leng)
img2=cv2.drawKeypoints(img,kp,None,(255,0,0),4)
plt.imshow(img2)
plt.show()
# 下面是U-SURF算法,關(guān)鍵點朝向一致,運算速度加快。
surf.upright=True
kp=surf.detect(img,None)
img3=cv2.drawKeypoints(img,kp,None,(255,0,0),4)
plt.imshow(img3)
plt.show()
#檢測關(guān)鍵點描述符大小,改64維成128維
surf.extended=True
kp,des=surf.detectAndCompute(img,None)
dem1=surf.descriptorSize()
print(dem1)
shp1=des.shape()
print(shp1)
效果圖
import cv2
from matplotlib import pyplot as plt
leftImage = cv2.imread('xfeatures2d.SURF_create_1.jpg')
rightImage = cv2.imread('xfeatures2d.SURF_create_2.jpg')
# 創(chuàng)造sift
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(leftImage, None)
kp2, des2 = sift.detectAndCompute(rightImage, None) # 返回關(guān)鍵點信息和描述符
FLANN_INDEX_KDTREE = 0
indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
searchParams = dict(checks=50) # 指定索引樹要被遍歷的次數(shù)
flann = cv2.FlannBasedMatcher(indexParams, searchParams)
matches = flann.knnMatch(des1, des2, k=2)
matchesMask = [[0, 0] for i in range(len(matches))]
print("matches", matches[0])
for i, (m, n) in enumerate(matches):
if m.distance 0.07 * n.distance:
matchesMask[i] = [1, 0]
drawParams = dict(matchColor=(0, 255, 0), singlePointColor=None,
matchesMask=matchesMask, flags=2) # flag=2只畫出匹配點,flag=0把所有的點都畫出
resultImage = cv2.drawMatchesKnn(leftImage, kp1, rightImage, kp2, matches, None, **drawParams)
plt.imshow(resultImage)
plt.show()
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
您可能感興趣的文章:- opencv-python圖像配準(zhǔn)(匹配和疊加)的實現(xiàn)
- Python使用Opencv實現(xiàn)圖像特征檢測與匹配的方法
- Python和OpenCV進(jìn)行多尺度模板匹配實現(xiàn)
- OpenCV-Python模板匹配人眼的實例
- OpenCV-Python實現(xiàn)多模板匹配
- python基于OpenCV模板匹配識別圖片中的數(shù)字
- Python開發(fā)之基于模板匹配的信用卡數(shù)字識別功能
- Python+Opencv實現(xiàn)圖像匹配功能(模板匹配)