主頁 > 知識庫 > Python OpenCV實現(xiàn)視頻追蹤

Python OpenCV實現(xiàn)視頻追蹤

熱門標(biāo)簽:外呼并發(fā)線路 宿遷星美防封電銷卡 ai電話機(jī)器人哪里好 地圖標(biāo)注審核表 百度地圖標(biāo)注沒有了 湛江智能外呼系統(tǒng)廠家 西藏房產(chǎn)智能外呼系統(tǒng)要多少錢 ai電銷機(jī)器人源碼 長沙高頻外呼系統(tǒng)原理是什么

本文實例為大家分享了Python OpenCV實現(xiàn)視頻追蹤的具體代碼,供大家參考,具體內(nèi)容如下

1. MeanShift

假設(shè)有一堆點集和一個圓形的小窗口?,F(xiàn)在需要將此窗口移動到具有最高點集密度的區(qū)域,如下圖:

第一個窗口C1是藍(lán)色圓圈的區(qū)域。藍(lán)色環(huán)的中心用藍(lán)色矩形標(biāo)記并命名為 C1_o。窗口中所有點的點集形成的質(zhì)心在藍(lán)色圓形點C1_r。顯然,質(zhì)心和環(huán)的質(zhì)心不重合。移動藍(lán)色窗口,使質(zhì)心與先前獲得的質(zhì)心重合。在新移動的圓環(huán)的區(qū)域內(nèi)再次找到圓環(huán)包圍的點集的質(zhì)心,然后再次移動。通常,形心和質(zhì)心不重合。繼續(xù)執(zhí)行上述移動過程,直到形心與質(zhì)心大致重合。這樣,最終的圓形窗口就會落到像素分布最大的地方,也就是圖中的綠色圓圈C2。

除了用于視頻跟蹤之外,MeanShift算法在涉及數(shù)據(jù)和無監(jiān)督學(xué)習(xí)的各種場景中都有重要的應(yīng)用,例如聚類、平滑等。它是一種廣泛使用的算法。

圖像是信息矩陣。如何使用MeanShift算法跟蹤視頻中的移動物體?一般流程如下:

1)在圖像上選擇一個目標(biāo)區(qū)域,

2)計算選中區(qū)域的直方圖分布,一般是HSV顏色空間的直方圖。

3)計算下一幀圖像 b 的直方圖分布。

4)計算圖像b中與所選區(qū)域的直方圖分布最相似的區(qū)域,并使用MeanShift算法將所選區(qū)域沿最相似的部分移動,直到找到最相似的區(qū)域。

5)重復(fù)3到4的過程,完成整個視頻目標(biāo)跟蹤。

一般情況下,我們使用直方圖反投影得到的圖像和目標(biāo)物體在第一幀的起始位置。當(dāng)目標(biāo)物體的運動會在直方圖反投影圖像中反映出來時,MeanShift算法會將窗口移動到反投影圖像中灰度密度最高的區(qū)域。

假設(shè)我們有一個 100x100 的輸入圖像和一個 10x10 的模板圖像,直方圖反投影的過程是這樣的:

1)從輸入圖像的左上角(0,0)開始,從(0,0)到(10,10)剪切一張臨時圖像。

2)生成臨時圖像的直方圖。

3)將臨時圖像的直方圖與模板圖像的直方圖進(jìn)行比較,比較結(jié)果標(biāo)記為c。

4)直方圖比較結(jié)果c為結(jié)果圖像中(0,0)處的像素值。

5)將輸入圖像的臨時圖像從(0,1)剪切到(10,11),對比直方圖,記錄結(jié)果圖像。

6)重復(fù)步驟1到5,直到輸入圖像的右下角,形成直方圖的反投影。

cv.meanShift(probImage, window, criteria)

參數(shù):

probImage ROI區(qū)域,即目標(biāo)的直方圖的反向投影。

window  初始搜索窗口,就是定義ROI的rect。

criteria 確定窗口搜索停止的準(zhǔn)則,主要有迭代次數(shù)達(dá)到設(shè)置的最大值,窗口中心的漂移值大于某個設(shè)定的限值等。

2. CamShift

MeanShift的結(jié)果有一個問題,檢測窗口的大小是固定的,而狗是一個由近到遠(yuǎn)逐漸變小的過程,固定的窗口是不合適的。 所以需要根據(jù)目標(biāo)的大小和角度來修正窗口的大小和角度。

CamShift(Continuously Adaptive Mean-Shift algorithm)是MeanShift算法的改進(jìn)算法,可以解決這個問題。它可以隨著跟蹤目標(biāo)大小的變化實時調(diào)整搜索窗口的大小,具有更好的跟蹤效果。 Camshift 算法首先應(yīng)用MeanShift。 一旦MeanShift收斂,它就會更新窗口的大小,同時計算出最佳擬合橢圓的方向,從而根據(jù)目標(biāo)的位置和大小來更新搜索窗口。

例:使用MeanShift和CamShift方法獲取視頻中的狗,并標(biāo)注。

import cv2 as cv
import numpy as np
 
# 獲取視頻
cap = cv.VideoCapture('image/DOG.wmv')
 
# 指定追蹤目標(biāo)
ret, frame = cap.read()
r, h, c, w = 197, 141, 0, 208
win = (c, r, w, h)
roi = frame[r:r + h, c:c + w]
 
# 計算直方圖
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
roi_hist = cv.calcHist([hsv_roi], [0], None, [180], [0, 180])
cv.normalize(roi_hist, roi_hist, 0, 255, cv.NORM_MINMAX)
 
# 目標(biāo)追蹤
term = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1)
 
# meanshift
while True:
    ret, frame = cap.read()
    if ret:
        hst = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
        dst = cv.calcBackProject([hst], [0], roi_hist, [0, 180], 1)
 
        ret, win = cv.meanShift(dst, win, term)
 
        x, y, w, h = win
        img2 = cv.rectangle(frame, (x, y), (x + w, y + h), 255, 2)
        cv.imshow("frame", img2)
        if cv.waitKey(60)  0xFF == ord('q'):
            break
 
# camshift
while True:
    ret, frame = cap.read()
    if ret:
        hst = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
        dst = cv.calcBackProject([hst], [0], roi_hist, [0, 180], 1)
 
        ret, track_window = cv.CamShift(dst, win, term)
 
        # 繪制追蹤結(jié)果
        pts = cv.boxPoints(ret)
        pts = np.int0(pts)
        img2 = cv.polylines(frame, [pts], True, 255, 2)
        cv.imshow("frame", img2)
        if cv.waitKey(60)  0xFF == ord('q'):
            break
 
# 釋放資源
cap.release()
cv.destroyAllWindows()

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • 在OpenCV里使用Camshift算法的實現(xiàn)
  • python實現(xiàn)mean-shift聚類算法
  • OpenCV機(jī)器學(xué)習(xí)MeanShift算法筆記分享

標(biāo)簽:南平 漯河 普洱 寧夏 大同 林芝 盤錦 海南

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《Python OpenCV實現(xiàn)視頻追蹤》,本文關(guān)鍵詞  Python,OpenCV,實現(xiàn),視頻,追蹤,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《Python OpenCV實現(xiàn)視頻追蹤》相關(guān)的同類信息!
  • 本頁收集關(guān)于Python OpenCV實現(xiàn)視頻追蹤的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章