函數(shù) | 派生的等效公式 |
---|---|
Secant(正割) | Sec(X) = 1 / Cos(X) |
Cosecant(余割) | Cosec(X) = 1 / Sin(X) |
Cotangent(余切) | Cotan(X) = 1 / Tan(X) |
Inverse Sine(反正弦) | Arcsin(X) = Atn(X / Sqr(-X * X + 1)) |
Inverse Cosine(反余弦) | Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1) |
Inverse Secant(反正割) | Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) -1) * (2 * Atn(1)) |
Inverse Cosecant(反余割) | Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1)) |
Inverse Cotangent(反余切) | Arccotan(X) = Atn(X) + 2 * Atn(1) |
Hyperbolic Sine(雙曲正弦) | HSin(X) = (Exp(X) - Exp(-X)) / 2 |
Hyperbolic Cosine(雙曲余弦) | HCos(X) = (Exp(X) + Exp(-X)) / 2 |
Hyperbolic Tangent(雙曲正切) | HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X)) |
Hyperbolic Secant(雙曲正割) | HSec(X) = 2 / (Exp(X) + Exp(-X)) |
Hyperbolic Cosecant(雙曲余割) | HCosec(X) = 2 / (Exp(X) - Exp(-X)) |
Hyperbolic Cotangent(雙曲余切) | HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X)) |
Inverse Hyperbolic Sine(反雙曲正弦) | HArcsin(X) = Log(X + Sqr(X * X + 1)) |
Inverse Hyperbolic Cosine(反雙曲余弦) | HArccos(X) = Log(X + Sqr(X * X - 1)) |
Inverse Hyperbolic Tangent(反雙曲正切) | HArctan(X) = Log((1 + X) / (1 - X)) / 2 |
Inverse Hyperbolic Secant(反雙曲正割) | HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X) |
Inverse Hyperbolic Cosecant(反雙曲余割) | HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X) |
Inverse Hyperbolic Cotangent(反雙曲余切) | HArccotan(X) = Log((X + 1) / (X - 1)) / 2 |
以 N 為底的對(duì)數(shù) | LogN(X) = Log(X) / Log(N) |
標(biāo)簽:內(nèi)蒙古 柳州 張掖 達(dá)州 資質(zhì)掛靠 鶴壁 南京 丹東
巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《VBS教程:函數(shù)-派生數(shù)學(xué)函數(shù)》,本文關(guān)鍵詞 VBS,教程,函數(shù),派生,數(shù)學(xué),;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。