CEP - Complex Event Processing復雜事件處理。
訂單下單后超過一定時間還未進行支付確認。
打車訂單生成后超過一定時間沒有確認上車。
外賣超過預定送達時間一定時限還沒有確認送達。
Apache FlinkCEP API
CEPTimeoutEventJob
FlinkCEP源碼簡析
DataStream和PatternStream
DataStream 一般由相同類型事件或元素組成,一個DataStream可以通過一系列的轉(zhuǎn)換操作如Filter、Map等轉(zhuǎn)換為另一個DataStream。
PatternStream 是對CEP模式匹配的流的抽象,把DataStream和Pattern組合在一塊,然后對外提供select和flatSelect等方法。PatternStream并不是DataStream,它提供方法把匹配的模式序列和與其相關聯(lián)的事件組成的映射(就是Map<模式名稱,List<事件>>)發(fā)出去,發(fā)到SingleOutputStreamOperator里面,SingleOutputStreamOperator是DataStream。
CEPOperatorUtils工具類里的方法和變量使用了「PatternStream」來命名,比如:
public
static
<IN, OUT>
SingleOutputStreamOperator
<OUT> createPatternStream(...){...}
public
static
<IN, OUT1, OUT2>
SingleOutputStreamOperator
<OUT1> createTimeoutPatternStream(...){...}
final
SingleOutputStreamOperator
<OUT> patternStream;
SingleOutputStreamOperator
@Public
public
class
SingleOutputStreamOperator
<T>
extends
DataStream
<T> {...}
PatternStream的構造方法:
PatternStream
(
final
DataStream
<T> inputStream,
final
Pattern
<T, ?> pattern) {
this
.inputStream = inputStream;
this
.pattern = pattern;
this
.comparator =
null
;
}
PatternStream
(
final
DataStream
<T> inputStream,
final
Pattern
<T, ?> pattern,
final
EventComparator
<T> comparator) {
this
.inputStream = inputStream;
this
.pattern = pattern;
this
.comparator = comparator;
}
Pattern、Quantifier和EventComparator
Pattern是模式定義的Base Class,Builder模式,定義好的模式會被NFACompiler用來生成NFA。
如果想要自己實現(xiàn)類似next和followedBy這種方法,比如timeEnd,對Pattern進行擴展重寫應該是可行的。
public
class
Pattern
<T, F
extends
T> {
/** 模式名稱 */
private
final
String
name;
/** 前面一個模式 */
private
final
Pattern
<T, ?
extends
T> previous;
/** 一個事件如果要被當前模式匹配到,必須滿足的約束條件 */
private
IterativeCondition
<F> condition;
/** 時間窗口長度,在時間長度內(nèi)進行模式匹配 */
private
Time
windowTime;
/** 模式量詞,意思是一個模式匹配幾個事件等 默認是匹配到一個 */
private
Quantifier
quantifier =
Quantifier
.one(
ConsumingStrategy
.STRICT);
/** 停止將事件收集到循環(huán)狀態(tài)時,事件必須滿足的條件 */
private
IterativeCondition
<F> untilCondition;
/**
* 適用于{@code times}模式,用來維護模式里事件可以連續(xù)發(fā)生的次數(shù)
*/
private
Times
times;
// 匹配到事件之后的跳過策略
private
final
AfterMatchSkipStrategy
afterMatchSkipStrategy;
...
}
Quantifier是用來描述具體模式行為的,主要有三大類:
Single-單一匹配、Looping-循環(huán)匹配、Times-一定次數(shù)或者次數(shù)范圍內(nèi)都能匹配到。
每一個模式Pattern可以是optional可選的(單一匹配或循環(huán)匹配),并可以設置ConsumingStrategy。
循環(huán)和次數(shù)也有一個額外的內(nèi)部ConsumingStrategy,用在模式中接收的事件之間。
public
class
Quantifier
{
...
/**
* 5個屬性,可以組合,但并非所有的組合都是有效的
*/
public
enum
QuantifierProperty
{
SINGLE,
LOOPING,
TIMES,
OPTIONAL,
GREEDY
}
/**
* 描述在此模式中匹配哪些事件的策略
*/
public
enum
ConsumingStrategy
{
STRICT,
SKIP_TILL_NEXT,
SKIP_TILL_ANY,
NOT_FOLLOW,
NOT_NEXT
}
/**
* 描述當前模式里事件可以連續(xù)發(fā)生的次數(shù);舉個例子,模式條件無非就是boolean,滿足true條件的事件連續(xù)出現(xiàn)times次,或者一個次數(shù)范圍,比如2~4次,2次,3次,4次都會被當前模式匹配出來,因此同一個事件會被重復匹配到
*/
public
static
class
Times
{
private
final
int
from;
private
final
int
to;
private
Times
(
int
from,
int
to) {
Preconditions
.checkArgument(from >
0
,
"The from should be a positive number greater than 0."
);
Preconditions
.checkArgument(to >= from,
"The to should be a number greater than or equal to from: "
+ from +
"."
);
this
.from = from;
this
.to = to;
}
public
int
getFrom() {
return
from;
}
public
int
getTo() {
return
to;
}
// 次數(shù)范圍
public
static
Times
of(
int
from,
int
to) {
return
new
Times
(from, to);
}
// 指定具體次數(shù)
public
static
Times
of(
int
times) {
return
new
Times
(times, times);
}
@Override
public
boolean
equals(
Object
o) {
if
(
this
== o) {
return
true
;
}
if
(o ==
null
|| getClass() != o.getClass()) {
return
false
;
}
Times
times = (
Times
) o;
return
from == times.from &&
to == times.to;
}
@Override
public
int
hashCode() {
return
Objects
.hash(from, to);
}
}
...
}
EventComparator,自定義事件比較器,實現(xiàn)EventComparator接口。
public
interface
EventComparator
<T>
extends
Comparator
<T>,
Serializable
{
long
serialVersionUID =
1L
;
}
NFACompiler和NFA
NFACompiler提供將Pattern編譯成NFA或者NFAFactory的方法,使用NFAFactory可以創(chuàng)建多個NFA。
public
class
NFACompiler
{
...
/**
* NFAFactory 創(chuàng)建NFA的接口
*
* @param <T> Type of the input events which are processed by the NFA
*/
public
interface
NFAFactory
<T>
extends
Serializable
{
NFA<T> createNFA();
}
/**
* NFAFactory的具體實現(xiàn)NFAFactoryImpl
*
* <p>The implementation takes the input type serializer, the window time and the set of
* states and their transitions to be able to create an NFA from them.
*
* @param <T> Type of the input events which are processed by the NFA
*/
private
static
class
NFAFactoryImpl
<T>
implements
NFAFactory
<T> {
private
static
final
long
serialVersionUID =
8939783698296714379L
;
private
final
long
windowTime;
private
final
Collection
<
State
<T>> states;
private
final
boolean
timeoutHandling;
private
NFAFactoryImpl
(
long
windowTime,
Collection
<
State
<T>> states,
boolean
timeoutHandling) {
this
.windowTime = windowTime;
this
.states = states;
this
.timeoutHandling = timeoutHandling;
}
@Override
public
NFA<T> createNFA() {
// 一個NFA由狀態(tài)集合、時間窗口的長度和是否處理超時組成
return
new
NFA<>(states, windowTime, timeoutHandling);
}
}
}
NFA:Non-deterministic finite automaton - 非確定的有限(狀態(tài))自動機。
更多內(nèi)容參見
https://zh.wikipedia.org/wiki/非確定有限狀態(tài)自動機
public
class
NFA<T> {
/**
* NFACompiler返回的所有有效的NFA狀態(tài)集合
* These are directly derived from the user-specified pattern.
*/
private
final
Map
<
String
,
State
<T>> states;
/**
* Pattern.within(Time)指定的時間窗口長度
*/
private
final
long
windowTime;
/**
* 一個超時匹配的標記
*/
private
final
boolean
handleTimeout;
...
}
PatternSelectFunction和PatternFlatSelectFunction
當一個包含被匹配到的事件的映射能夠通過模式名稱訪問到的時候,PatternSelectFunction的select()方法會被調(diào)用。模式名稱是由Pattern定義的時候指定的。select()方法恰好返回一個結(jié)果,如果需要返回多個結(jié)果,則可以實現(xiàn)PatternFlatSelectFunction。
public
interface
PatternSelectFunction
<IN, OUT>
extends
Function
,
Serializable
{
/**
* 從給到的事件映射中生成一個結(jié)果。這些事件使用他們關聯(lián)的模式名稱作為唯一標識
*/
OUT select(
Map
<
String
,
List
<IN>> pattern)
throws
Exception
;
}
PatternFlatSelectFunction,不是返回一個OUT,而是使用Collector 把匹配到的事件收集起來。
public
interface
PatternFlatSelectFunction
<IN, OUT>
extends
Function
,
Serializable
{
/**
* 生成一個或多個結(jié)果
*/
void
flatSelect(
Map
<
String
,
List
<IN>> pattern,
Collector
<OUT> out)
throws
Exception
;
}
SelectTimeoutCepOperator、PatternTimeoutFunction
SelectTimeoutCepOperator是在CEPOperatorUtils中調(diào)用createTimeoutPatternStream()方法時創(chuàng)建出來。
SelectTimeoutCepOperator中會被算子迭代調(diào)用的方法是processMatchedSequences()和processTimedOutSequences()。
模板方法...對應到抽象類AbstractKeyedCEPPatternOperator中processEvent()方法和advanceTime()方法。
還有FlatSelectTimeoutCepOperator和對應的PatternFlatTimeoutFunction。
public
class
SelectTimeoutCepOperator
<IN, OUT1, OUT2, KEY>
extends
AbstractKeyedCEPPatternOperator
<IN, KEY, OUT1,
SelectTimeoutCepOperator
.
SelectWrapper
<IN, OUT1, OUT2>> {
private
OutputTag
<OUT2> timedOutOutputTag;
public
SelectTimeoutCepOperator
(
TypeSerializer
<IN> inputSerializer,
boolean
isProcessingTime,
NFACompiler
.
NFAFactory
<IN> nfaFactory,
final
EventComparator
<IN> comparator,
AfterMatchSkipStrategy
skipStrategy,
// 參數(shù)命名混淆了flat...包括SelectWrapper類中的成員命名...
PatternSelectFunction
<IN, OUT1> flatSelectFunction,
PatternTimeoutFunction
<IN, OUT2> flatTimeoutFunction,
OutputTag
<OUT2> outputTag,
OutputTag
<IN> lateDataOutputTag) {
super
(
inputSerializer,
isProcessingTime,
nfaFactory,
comparator,
skipStrategy,
new
SelectWrapper
<>(flatSelectFunction, flatTimeoutFunction),
lateDataOutputTag);
this
.timedOutOutputTag = outputTag;
}
...
}
public
interface
PatternTimeoutFunction
<IN, OUT>
extends
Function
,
Serializable
{
OUT timeout(
Map
<
String
,
List
<IN>> pattern,
long
timeoutTimestamp)
throws
Exception
;
}
public
interface
PatternFlatTimeoutFunction
<IN, OUT>
extends
Function
,
Serializable
{
void
timeout(
Map
<
String
,
List
<IN>> pattern,
long
timeoutTimestamp,
Collector
<OUT> out)
throws
Exception
;
}
CEP和CEPOperatorUtils
CEP是創(chuàng)建PatternStream的工具類,PatternStream只是DataStream和Pattern的組合。
public
class
CEP {
public
static
<T>
PatternStream
<T> pattern(
DataStream
<T> input,
Pattern
<T, ?> pattern) {
return
new
PatternStream
<>(input, pattern);
}
public
static
<T>
PatternStream
<T> pattern(
DataStream
<T> input,
Pattern
<T, ?> pattern,
EventComparator
<T> comparator) {
return
new
PatternStream
<>(input, pattern, comparator);
}
}
CEPOperatorUtils是在PatternStream的select()方法和flatSelect()方法被調(diào)用的時候,去創(chuàng)建SingleOutputStreamOperator(DataStream)。
public
class
CEPOperatorUtils
{
...
private
static
<IN, OUT, K>
SingleOutputStreamOperator
<OUT> createPatternStream(
final
DataStream
<IN> inputStream,
final
Pattern
<IN, ?> pattern,
final
TypeInformation
<OUT> outTypeInfo,
final
boolean
timeoutHandling,
final
EventComparator
<IN> comparator,
final
OperatorBuilder
<IN, OUT> operatorBuilder) {
final
TypeSerializer
<IN> inputSerializer = inputStream.getType().createSerializer(inputStream.getExecutionConfig());
// check whether we use processing time
final
boolean
isProcessingTime = inputStream.getExecutionEnvironment().getStreamTimeCharacteristic() ==
TimeCharacteristic
.
ProcessingTime
;
// compile our pattern into a NFAFactory to instantiate NFAs later on
final
NFACompiler
.
NFAFactory
<IN> nfaFactory =
NFACompiler
.compileFactory(pattern, timeoutHandling);
final
SingleOutputStreamOperator
<OUT> patternStream;
if
(inputStream
instanceof
KeyedStream
) {
KeyedStream
<IN, K> keyedStream = (
KeyedStream
<IN, K>) inputStream;
patternStream = keyedStream.transform(
operatorBuilder.getKeyedOperatorName(),
outTypeInfo,
operatorBuilder.build(
inputSerializer,
isProcessingTime,
nfaFactory,
comparator,
pattern.getAfterMatchSkipStrategy()));
}
else
{
KeySelector
<IN,
Byte
> keySelector =
new
NullByteKeySelector
<>();
patternStream = inputStream.keyBy(keySelector).transform(
operatorBuilder.getOperatorName(),
outTypeInfo,
operatorBuilder.build(
inputSerializer,
isProcessingTime,
nfaFactory,
comparator,
pattern.getAfterMatchSkipStrategy()
)).forceNonParallel();
}
return
patternStream;
}
...
}
FlinkCEP實現(xiàn)步驟
- IN: DataSource -> DataStream -> Transformations -> DataStream
- Pattern: Pattern.begin.where.next.where...times...
- PatternStream: CEP.pattern(DataStream, Pattern)
- DataStream: PatternStream.select(PatternSelectFunction) PatternStream.flatSelect(PatternSelectFunction)
- OUT: DataStream -> Transformations -> DataStream -> DataSink
FlinkCEP匹配超時實現(xiàn)步驟
TimeoutCEP的流需要keyBy,即KeyedStream,如果inputStream不是KeyedStream,會new一個0字節(jié)的Key(上面CEPOperatorUtils源碼里有提到)。
KeySelector
<IN,
Byte
> keySelector =
new
NullByteKeySelector
<>();
Pattern最后調(diào)用within設置窗口時間。 如果是對主鍵進行分組,一個時間窗口內(nèi)最多只會匹配出一個超時事件,使用PatternStream.select(...)就可以了。
- IN: DataSource -> DataStream -> Transformations -> DataStream -> keyBy -> KeyedStream
- Pattern: Pattern.begin.where.next.where...within(Time windowTime)
- PatternStream: CEP.pattern(KeyedStream, Pattern)
- OutputTag: new OutputTag(...)
- SingleOutputStreamOperator: PatternStream.flatSelect(OutputTag, PatternFlatTimeoutFunction, PatternFlatSelectFunction)
- DataStream: SingleOutputStreamOperator.getSideOutput(OutputTag)
- OUT: DataStream -> Transformations -> DataStream -> DataSink
FlinkCEP超時不足
和Flink窗口聚合類似,如果使用事件時間和依賴事件生成的水印向前推進,需要后續(xù)的事件到達,才會觸發(fā)窗口進行計算和輸出結(jié)果。
FlinkCEP超時完整demo
public
class
CEPTimeoutEventJob
{
private
static
final
String
LOCAL_KAFKA_BROKER =
"localhost:9092"
;
private
static
final
String
GROUP_ID =
CEPTimeoutEventJob
.
class
.getSimpleName();
private
static
final
String
GROUP_TOPIC = GROUP_ID;
public
static
void
main(
String
[] args)
throws
Exception
{
// 參數(shù)
ParameterTool
params =
ParameterTool
.fromArgs(args);
StreamExecutionEnvironment
env =
StreamExecutionEnvironment
.getExecutionEnvironment();
// 使用事件時間
env.setStreamTimeCharacteristic(
TimeCharacteristic
.
EventTime
);
env.enableCheckpointing(
5000
);
env.getCheckpointConfig().enableExternalizedCheckpoints(
CheckpointConfig
.
ExternalizedCheckpointCleanup
.RETAIN_ON_CANCELLATION);
env.getConfig().disableSysoutLogging();
env.getConfig().setRestartStrategy(
RestartStrategies
.fixedDelayRestart(
5
,
10000
));
// 不使用POJO的時間
final
AssignerWithPeriodicWatermarks
extractor =
new
IngestionTimeExtractor
<POJO>();
// 與Kafka Topic的Partition保持一致
env.setParallelism(
3
);
Properties
kafkaProps =
new
Properties
();
kafkaProps.setProperty(
"bootstrap.servers"
, LOCAL_KAFKA_BROKER);
kafkaProps.setProperty(
"group.id"
, GROUP_ID);
// 接入Kafka的消息
FlinkKafkaConsumer011
<POJO> consumer =
new
FlinkKafkaConsumer011
<>(GROUP_TOPIC,
new
POJOSchema
(), kafkaProps);
DataStream
<POJO> pojoDataStream = env.addSource(consumer)
.assignTimestampsAndWatermarks(extractor);
pojoDataStream.print();
// 根據(jù)主鍵aid分組 即對每一個POJO事件進行匹配檢測【不同類型的POJO,可以采用不同的within時間】
// 1.
DataStream
<POJO> keyedPojos = pojoDataStream
.keyBy(
"aid"
);
// 從初始化到終態(tài)-一個完整的POJO事件序列
// 2.
Pattern
<POJO, POJO> completedPojo =
Pattern
.<POJO>begin(
"init"
)
.where(
new
SimpleCondition
<POJO>() {
private
static
final
long
serialVersionUID = -
6847788055093903603L
;
@Override
public
boolean
filter(POJO pojo)
throws
Exception
{
return
"02"
.equals(pojo.getAstatus());
}
})
.followedBy(
"end"
)
// .next("end")
.where(
new
SimpleCondition
<POJO>() {
private
static
final
long
serialVersionUID = -
2655089736460847552L
;
@Override
public
boolean
filter(POJO pojo)
throws
Exception
{
return
"00"
.equals(pojo.getAstatus()) ||
"01"
.equals(pojo.getAstatus());
}
});
// 找出1分鐘內(nèi)【便于測試】都沒有到終態(tài)的事件aid
// 如果針對不同類型有不同within時間,比如有的是超時1分鐘,有的可能是超時1個小時 則生成多個PatternStream
// 3.
PatternStream
<POJO> patternStream = CEP.pattern(keyedPojos, completedPojo.within(
Time
.minutes(
1
)));
// 定義側(cè)面輸出timedout
// 4.
OutputTag
<POJO> timedout =
new
OutputTag
<POJO>(
"timedout"
) {
private
static
final
long
serialVersionUID =
773503794597666247L
;
};
// OutputTag<L> timeoutOutputTag, PatternFlatTimeoutFunction<T, L> patternFlatTimeoutFunction, PatternFlatSelectFunction<T, R> patternFlatSelectFunction
// 5.
SingleOutputStreamOperator
<POJO> timeoutPojos = patternStream.flatSelect(
timedout,
new
POJOTimedOut
(),
new
FlatSelectNothing
()
);
// 打印輸出超時的POJO
// 6.7.
timeoutPojos.getSideOutput(timedout).print();
timeoutPojos.print();
env.execute(
CEPTimeoutEventJob
.
class
.getSimpleName());
}
/**
* 把超時的事件收集起來
*/
public
static
class
POJOTimedOut
implements
PatternFlatTimeoutFunction
<POJO, POJO> {
private
static
final
long
serialVersionUID = -
4214641891396057732L
;
@Override
public
void
timeout(
Map
<
String
,
List
<POJO>> map,
long
l,
Collector
<POJO> collector)
throws
Exception
{
if
(
null
!= map.get(
"init"
)) {
for
(POJO pojoInit : map.get(
"init"
)) {
System
.out.println(
"timeout init:"
+ pojoInit.getAid());
collector.collect(pojoInit);
}
}
// 因為end超時了,還沒收到end,所以這里是拿不到end的
System
.out.println(
"timeout end: "
+ map.get(
"end"
));
}
}
/**
* 通常什么都不做,但也可以把所有匹配到的事件發(fā)往下游;如果是寬松臨近,被忽略或穿透的事件就沒辦法選中發(fā)往下游了
* 一分鐘時間內(nèi)走完init和end的數(shù)據(jù)
*
* @param <T>
*/
public
static
class
FlatSelectNothing
<T>
implements
PatternFlatSelectFunction
<T, T> {
private
static
final
long
serialVersionUID = -
3029589950677623844L
;
@Override
public
void
flatSelect(
Map
<
String
,
List
<T>> pattern,
Collector
<T> collector) {
System
.out.println(
"flatSelect: "
+ pattern);
}
}
}
測試結(jié)果(followedBy):
3
> POJO{aid=
'ID000-0'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563419728242
, energy=
529.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'02'
, createTime=
null
, updateTime=
null
}
3
> POJO{aid=
'ID000-1'
, astyle=
'STYLE000-2'
, aname=
'NAME-1'
, logTime=
1563419728783
, energy=
348.00
, age=
26
, tt=
2019
-
07
-
18
, astatus=
'02'
, createTime=
null
, updateTime=
null
}
3
> POJO{aid=
'ID000-0'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563419749259
, energy=
492.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'00'
, createTime=
null
, updateTime=
null
}
flatSelect: {init=[POJO{aid=
'ID000-0'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563419728242
, energy=
529.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'02'
, createTime=
null
, updateTime=
null
}],
end
=[POJO{aid=
'ID000-0'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563419749259
, energy=
492.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'00'
, createTime=
null
, updateTime=
null
}]}
timeout init:ID000-
1
3
> POJO{aid=
'ID000-1'
, astyle=
'STYLE000-2'
, aname=
'NAME-1'
, logTime=
1563419728783
, energy=
348.00
, age=
26
, tt=
2019
-
07
-
18
, astatus=
'02'
, createTime=
null
, updateTime=
null
}
timeout
end
:
null
3
> POJO{aid=
'ID000-2'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563419829639
, energy=
467.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'03'
, createTime=
null
, updateTime=
null
}
3
> POJO{aid=
'ID000-2'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563419841394
, energy=
107.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'00'
, createTime=
null
, updateTime=
null
}
3
> POJO{aid=
'ID000-3'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563419967721
, energy=
431.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'02'
, createTime=
null
, updateTime=
null
}
3
> POJO{aid=
'ID000-3'
, astyle=
'STYLE000-2'
, aname=
'NAME-0'
, logTime=
1563419979567
, energy=
32.00
, age=
26
, tt=
2019
-
07
-
18
, astatus=
'03'
, createTime=
null
, updateTime=
null
}
3
> POJO{aid=
'ID000-3'
, astyle=
'STYLE000-2'
, aname=
'NAME-0'
, logTime=
1563419993612
, energy=
542.00
, age=
26
, tt=
2019
-
07
-
18
, astatus=
'01'
, createTime=
null
, updateTime=
null
}
flatSelect: {init=[POJO{aid=
'ID000-3'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563419967721
, energy=
431.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'02'
, createTime=
null
, updateTime=
null
}],
end
=[POJO{aid=
'ID000-3'
, astyle=
'STYLE000-2'
, aname=
'NAME-0'
, logTime=
1563419993612
, energy=
542.00
, age=
26
, tt=
2019
-
07
-
18
, astatus=
'01'
, createTime=
null
, updateTime=
null
}]}
3
> POJO{aid=
'ID000-4'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563420063760
, energy=
122.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'02'
, createTime=
null
, updateTime=
null
}
3
> POJO{aid=
'ID000-4'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563420078008
, energy=
275.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'03'
, createTime=
null
, updateTime=
null
}
timeout init:ID000-
4
3
> POJO{aid=
'ID000-4'
, astyle=
'STYLE000-0'
, aname=
'NAME-0'
, logTime=
1563420063760
, energy=
122.00
, age=
0
, tt=
2019
-
07
-
18
, astatus=
'02'
, createTime=
null
, updateTime=
null
}
timeout
end
:
null
總結(jié)
以上所述是小編給大家介紹的Apache FlinkCEP 實現(xiàn)超時狀態(tài)監(jiān)控的步驟,希望對大家有所幫助,如果大家有任何疑問歡迎給我留言,小編會及時回復大家的!